
Trace Tutorial Overview

The objective of this tutorial is to acquaint you with the basic use of the Trace System software. The Trace System software includes the following:

� The Trace Control – The Trace Control allows you to set trace collection related options, such as synchronizing trace collection with target execution, whether to stall the CPU if the
on-chip trace FIFOs become full, and so on.

� The Trace Display - The Trace Display presents the collected trace data in columns and provides capabilities to search, bookmark, save and export the data.

� The CCStudio Breakpoint Manager and Event Sequencer – These tools allow you to create Advanced Event Triggering actions that determine when and how to collect trace data, as
well as what data to collect.

The following assumptions are made for this tutorial:

� This tutorial is based on using Code Composer Studio Version 3.3 using a Spectrum Digital 6416 DSK target board, with a TI XDS560T Trace Cable and a Blackhawk USB emulator.

The Trace System user interface may vary depending upon your version of Code Composer Studio, target board, and emulator. The tutorial attempts to be as agnostic of these
issues as possible.

� The tutorial assumes that you have already set up Code Composer Studio, the target board, and the emulator as described in the appropriate documentation.

Note: If you have previously run this tutorial or have used the Trace System software before running this tutorial, the screen shots in the tutorial may be different than what you see on
your screen. This can be due to your having previously set options other than what the tutorial covers, and or hiding Trace Display columns, which is a setting preserved across Trace
Display invocations.

Initializing the Target System

To initialize a target system:

1. Power the target board down and back up again.

2. Start Code Composer Studio.

3. Connect to the target by selecting Debug ® Connect.

4. Remove any existing breakpoints and reset the External Memory Interface by selecting GEL ® Resets ® Reset_BreakPts_and_EMIF. (The exact menu item text may be different
for specific devices).

5. Flush the on-chip cache by selecting GEL ® Resets ® Flush Cache. (The exact menu item text may be different for specific devices).

6. Load the tutorial project located at CCStudioInstall \tutorial\trace\Device \tutorial\tutorial.pjt with Project ® Open… (For example:
CCStudioInstall\tutorial\trace\64x\tutorial\tutorial.pjt)

7. Rebuild the tutorial project by selecting Project ® Rebuild All.

8. Load the target program by selecting File ® Load Program… then browse to the Debug directory and select tutorial.out.

9. Click Open.

How to Trace Your Target Application

The following steps demonstrate how to use the CCStudio Breakpoint Manager to program the on-chip AET hardware to collect Program Address and cycle accurate Timestamp information
from your target application by using the Trace On Action.

1. When initialization is complete, start the Breakpoint Manager by selecting Tools ® XDS560 Trace ® Setup… or Debug ® Breakpoints. The Breakpoint Manager opens at the bottom
of the CCStudio window.

Page 1 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

2. Click New item dropdown list (black triangle next to the New icon in the toolbar) in the Breakpoint Manager and select Trace.

3. The Property window for the Trace action should open automatically in the right side of the CCStudio window. If it does not automatically open, click on the Open Property Window

icon () in the toolbar of the Breakpoint Manager window.

Page 2 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

4. In the Property window, expand the Type and What to Trace properties by clicking on the plus sign to the left of those properties. Under Actions, you can see that the default Trace
Action is Trace On.

5. Make sure that the Program Address and Timing Stamp properties are checked under What to Trace, as well as the Enabled property. Finally, click on the Submit Changes icon in
the Properties window toolbar to apply the changes.

Note that the Code Composer Studio Status Bar updates with a Trace Initialization progress bar. All CCS operations are prevented while trace is initializing. When this progress bar
disappears, the trace system is finished initializing and you may continue with CCS operations.

Page 3 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

When initialization is complete, the Trace Display window automatically appears in front of the Code Composer Studio window. The Trace Display determines the correct target .out
file for the loaded project (required to disassemble the collected trace data), programs the on-chip AET Hardware, initializes and attaches the receiver to the CPU, and creates a
trace window for that CPU. The Trace Display’s status bar changes to indicate that it is in the recording state Receiver recording trace data because the Trace On action starts
recording data as soon as it is applied.

6. In Code Composer Studio, open the source file tutorial.c and set a software breakpoint at line 45, ccc++.

7. Run the target by selecting Debug ® Run.

When the target hits the breakpoint, the Trace System stops recording and the Trace Display appears automatically and displays data. This behavior is due to the default
Synchronize Trace with Target Execution option. The exact columns that appear in the display depend upon the target device.

Page 4 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

The status bar at the bottom of the Trace Display window indicates Receiver stopped due to user request. This is due to the default Synchronize Trace with Target Execution option.

Hiding and Reordering Trace Columns

By default, the Trace Display shows the columns of trace data for the most typical debug use cases. It is possible that your debug use case will require collecting and analyzing additional
types of trace data. The Trace Display allows you to hide, add, or reorder the columns that are displayed.

1. To hide columns, click on the Fields… button.

Note: The available trace fields list varies based on the target device.

2. Since the tutorial project does not use software overlays, this field is not necessary for analysis of the trace data. Remove the Load Address field by selecting the Load Address
field under the right hand pane of the dialog box (Visible trace fields), and then clicking on the Delete button. The dialog should now resemble the following:

3. You can reorder the fields by selecting the fields in the right hand pane and clicking the Move up or Move down buttons so that the columns appear in the order that makes analysis
of the trace data easiest for you. You can add fields by selecting them in the “Available trace fields” list, and then clicking on the => button to move them to the “Visible trace
fields” list. For this tutorial, you should not add or reorder the fields being displayed; so be sure that the fields dialog appears as below when you have finished experimenting with
adding and reordering fields.

Page 5 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

4. Click OK to dismiss the Fields dialog.

The Trace Display columns should now appear as below. (The data may differ.)

Scrolling and Source Code Display Synchronization

The trace tutorial program contains one C file, tutorial.c, which is not located in the tutorial project directory. In the Trace Display you will see that under the Source column, only the
source file name and line number, "tutorial.c(36)", appear for the main() function instructions.

Page 6 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

To inform the Trace Display where the tutorial.c file is located, you must add the directory to the Trace Display’s Source Directory List.

1. Right click in the Trace Window and select Source ® Set Source Directory… to bring up the Source File Path Dialog.

2. Click on the New Folder… button and navigate to and select the common directory one level up from the tutorial project directory.

Page 7 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

3. Click OK to dismiss the dialog. The Source File Path dialog should now contain both the tutorial project directory and the common directory as shown below.

4. Click OK to dismiss the Source File Path dialog.

The Trace window should now show the source code lines for the main() function in tutorial.c as seen below, rather than just the file name and line numbers.

Page 8 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

As you begin to scroll through the trace window, the Trace Display opens a separate window for the tutorial.c source file. You may need to select Window ® Tile to see both the
trace window and the source window in the Trace Display.

The highlighted line in the source code window will change to match the highlighted source line in the trace window as you continue to scroll in either direction. For example:

Initial scrolling results in:

Second scrolling results in:

Page 9 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

Note: As you scroll through the Trace data, the corresponding source file opens in a separate window in the Trace Display. The highlighted line in the source code window changes to
match the highlighted source line in the Trace window as you continue to scroll in either direction.
For source synchronization to work, the Trace Display must know the location of the source file. Source files located in the Code Composer Studio project directory are found
automatically by the Trace Display. If the Trace Display does not know the location of the source file, the Trace Display will not open a source window, and instead will show only the
source file name and line number in the Source column.
As an example, this behavior is not true for the code at the beginning of the Trace Tutorial program, which is the C Run-Time Library. The source files for the C Run-Time Library are
distributed as an archive file in the CCStudioInstall/Device/cgtools/lib/ directory titled rts.src. You can use the Code Generation archiver tool to extract the source files for the C Run-Time
Library.

Searching Trace Data

You can also search through the data in the Trace Display by clicking on the Query… button to bring up the Trace Search Query dialog.

1. Maximize the Trace Window by clicking on the Maximize icon in the upper right corner. Then click on the Home button on your keyboard to scroll to the beginning of the trace data.

2. Select the Trace Status column in the left hand pane and click the Field contains string A radio button.

3. Enter the text Pipeline stall into the A = text edit box, then click OK.

The Trace Display now highlights in light gray the rows that match the specified Query text.

Page 10 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

4. You may need to click on the Home key and scroll down to see more than one Pipeline stall in the Trace Display window.

5. In the Trace Display window, click on the > button next to the Query drop down box. The first matching line is highlighted in yellow. Clicking the > button highlights the next
match, and clicking the < button highlights the previous match.

Page 11 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

Filtering Trace Data

While it is often useful to be able to search for data in this find-next/previous manner, it is also useful to find all the places that match a particular set of search criteria and display only
those lines. This batch searching capability is called Filtering.

1. Click on the checkbox next to the Query… to turn off the Query highlighting.

2. Next, click on the Filter… button and set up the same search criteria that we did in the Trace Search Query dialog in the Trace Filter Query dialog:

a. Select the Trace Status column in the left hand pane and click the Field contains string A radio button.

b. Enter the text Pipeline stall into the A = text edit box.

3. Click OK.

The Trace Display now shows only those lines that match the Filter search criteria. The currently selected row is still highlighted.

Page 12 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

4. You can turn off filtering by clicking the checkbox to the left of the Filter… icon. Note that the currently selected sample in the filtered view remains selected in the unfiltered view.
This is a useful way to find a particular occurrence of a filtered sample (such as the third Pipeline stall), and then see the surrounding code once filtering is turned off.

More Complex Filtering

Filtering is useful to determine if a particular Trace Status value, say Pipeline stalls (see Filtering Trace Data), has occurred at all in the collected trace data. By setting more than one
field’s search criteria, you can narrow down your search. For example, you could search for all Pipelines stalls while the Program Address value is in the range of the start and end
addresses of a particular function.

To demonstrate more complex Filtering criteria, let us assume we are only interested in Pipeline stalls that occur in the Program Address range 0x4B50 – 0x4B70.

1. Click on the Filter button to bring up the Trace Filter Query dialog again.

2. Select the Program Address column in the left hand pane.

3. Click on (Field & Mask) >= A && (Field & Mask) <= B, and enter the value 0x4B50 for A and 0x4B70 for B, then click OK.

Page 13 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

The Trace Display should now appear as below.

Tip: Another useful search strategy is to filter for the Trace Status rows that contain “Interrupt”, then turn off filtering by un-checking the Filter checkbox to see where each interrupt
occurred. This is helpful to verify that interrupts are occurring at the correct priority level. This is also a good way to detect if your Interrupt Service Table Pointer Register contains the
correct address by noting where the interrupt branches to when it does occur.

4. Un-check the checkbox next to the Filter… button to turn off all filtering now.

The Trace Display format should now appear as below. (Your data may differ.)

Page 14 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

Saving and Exporting Trace Data

You can save the collected trace data in different formats for subsequent offline analysis or re-opening in the Trace Display.

1. Click on the Save button in the Trace Display.

The trace data can be saved in three different file formats:

� Comma Separated Value (.csv) – This format is used for importing into spreadsheets and with scripting languages such as Perl or Python. This format cannot be reopened by the
Trace Display.

� Text (.ttd) – This format is useful for parsing with scripting languages such as Perl or Python. This format can be reopened by the Trace Display.

� Binary (.tdf) – This format contains the encoded trace data as it comes out of the receiver and all of the information necessary to reopen the file with the Trace Display.

There are many options in the Save File dialog that allow you to save only the trace data that is important to you rather than saving all of the trace data, which can become quite
sizeable.

When saving in binary format, any Trace Display options you have set at the time you save your file are preserved in the file and restored when you re-open the file. For instance, if
you have your data filtered, the filter search criteria are restored when you re-open the file.

2. Save the file in binary format as tutorial.tdf.

You can re-open this file using the Trace Display after finishing the Trace Tutorial to explore more of the Trace Display’s capabilities.

Using Trace System Options

Now that we have seen some of the features of the Trace Display, let us examine a few of the more important Trace System options.

� Using the Synchronize Trace With Target Execution Option

� Restarting and Resuming Trace Collection

� Choosing the Trace Buffer Type

� Changing the Trace System Receiver

Using the Synchronize Trace With Target Execution Option

By default, when the target hits a breakpoint, the Trace System stops recording and the Trace Display appears automatically and displays data. This behavior is due to the default
Synchronize Trace with Target Execution option. The exact columns that appear in the display depend upon the target device.

To see this option in action, select Debug → Run to run to the breakpoint again.

When the breakpoint is hit again, the Trace Display updates automatically, and contains all and only the code executed in the second iteration of the loop between “ccc++;” statements.
This is because we have asked the Receiver to synchronize with target execution, and this option forces the Trace Receiver to automatically clear its buffer and restart collection when the
target is run. As long as you keep hitting the Run button in Code Composer Studio, the Trace System will clear the Receiver’s buffer and record only what is between the loop iterations.

For example:

Page 15 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

Restarting and Resuming Trace Collection

We can modify the default Trace behavior so that the Trace system appends data to the existing Receiver buffer rather than clearing it.

1. In Code Composer Studio, select Tools ® XDS560 Trace ® Control… to bring up the Trace Control window once again.

2. Turn off Synchronize Trace with Target Execution and click Apply.

3. When Trace is done reinitializing, click OK to dismiss the Trace Collection dialog.

4. Select Debug ® Run.

5. When the breakpoint is hit, go to the Trace Display and click on the Stop button.

6. The Trace Display contains just the one iteration of the loop.

7. Click the Resume button rather than the Start button.

8. Repeat the Run/Stop/Resume steps two or three more times.

Each time the display contains more data, having appended each iteration of the loop because we have been using the Resume button rather than the Start button. Use Start when
you want the Receiver to clear its buffer before you run the target again. Use the Resume button when you want to append to the existing Receiver buffer.

Choosing the Trace Buffer Type

There are two choices for the Trace Buffer Type in the Trace Control: Circular Buffer and Stop on Buffer Full. The default is Circular Buffer.

In Stop on Buffer Full, recording stops automatically when enough trace data is collected to fill the trace buffer. Recording can stop before the trace buffer is full if the target halts, an End
Trace Action trigger occurs, or you hit the Stop button in the Trace Display.

In Circular Buffering, the buffer wraps and new trace data is stored starting at the beginning of the trace buffer when enough trace data is collected to fill the buffer, so that older trace

Page 16 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

data is continually overwritten. Recording does not stop until the target stops executing, an End Trace Action trigger occurs, or you hit the Stop button in the Trace Display.

In Circular Buffering, if the buffer has not wrapped and recording stops, the data in the buffer contains everything from the time recording started until recording stopped. This is
equivalent to Stop on Buffer Full. However, in Circular Buffering, if the buffer has wrapped and recording stops, the data in the buffer no longer contains information from when recording
started, but only data backwards in time from when recording stopped.

Thus, in Circular Buffering the buffer usually wraps, which allows you to look backward from the point you stopped recording, while Stop on Buffer Full allows you to look forward in time
from the point you started recording.

Circular Buffering would be good to use to determine the program flow that led to a problem at a known program location where the problem occurred. To perform this function, you would
first program a Trace On action, set a breakpoint in your target application at the problem location, and then run your target application. When execution halts on the breakpoint, trace
recording will be stopped. Trace Display will then show your target application actions from the time you hit the Stop button backwards in time, and allowing you to observe the problem
path and discover the root cause of the problem.

Stop on Buffer Full would be good to use when your target application runs outside of the program image space defined in your .out/COFF file, soon after a certain function is called. In this
case, you would set a breakpoint at that function, run your target application until it hits the breakpoint, then program a Trace On action and continue executing your target application
from that breakpoint. When the trace buffer is full, recording will stop automatically, and Trace Display will show as much information as allowed by the trace data buffer capacity, starting
from the breakpoint on. You can see exactly where your program flow started to run outside of the program image space because the Trace Status column will show the message Bad PC.
If the trace data buffer does not have the capacity to capture the problem, you may use it to find a point further in the target application program flow to set another breakpoint so that
you can capture the problem.

Changing the Trace System Receiver

Trace assumes you are using a TI XDS560T receiver. You can change the receiver by following these steps:

1. Bring up the Trace Control window by selecting the Tools ® XDS560 Trace ® Control… menu item.

2. Click on the Receiver button. Highlight the desired receiver name and click OK.

3. Click Apply in the Trace Control window. The Trace System presents a dialog and a progress indicator in the Code Composer Studio status bar while it is initializing the Trace
System.

Summary of Trace Jobs

This tutorial used only one of the Trace actions, Trace On, and one type of trace, called Standard Trace, to demonstrate basic Trace System capability.

The other type of trace is called Event Trace, it allows you collect one of four categories of events:

� Memory event tracing records cache events, such as L1P Read Miss, L1D Write, and so on.

� Stall event tracing records the reason for the stall.

� Predication event tracing records whether an instruction executed (predicated true or false).

� External event tracing records events you program your target to generate. See the Interrupt Controller Spec for your target to learn how to program External Events. For example,
for a C64x+ target, see the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871E).

Note that the Trace On action starts recording trace immediately. All of the other Trace actions start recording when a trigger condition is true. The most frequently used trigger event is
when the PC reaches a specified location or is within a specified range. Other triggers are possible, such as data memory accesses and events.

For more information about Event Trace and trace triggers, see the Trace System online help.

The following are other Trace actions with a brief description of what they do and some example use cases.

� Trace On – The Trace On action turns trace on immediately. This action is useful for when you first start debug and do not know where in your program flow a problem may have
occurred. See Choosing the Trace Buffer Type for examples.

Page 17 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

� Start Trace and End Trace – The Start and End Trace actions allow you to start and end trace at any program address location or within any program address range. The Start and
End Trace actions also allow data memory triggers or event triggers. Thus, you can start or end collecting trace data whenever a write occurs to a data address range. Or you can
start or end collecting trace data whenever a particular event occurs, for example a cache hit or miss, or an interrupt acknowledge. Start/End Trace actions follow the program
beyond function call boundaries. You can have more than one Start/End trace action. As with Trace On actions, knowing approximately where the problem occurs helps assure that
you can capture the problem within the trace data buffer you collect. Start/End trace is useful for debugging stack corruption problems since the captured program flow will show
you where function returns do not return to the correct calling function.

� Trace In Range – The Trace In Range action allows you to specify a particular program address range to trace, for example, a particular function or range of functions contiguous in
memory (such as ISRs). The Trace In Range action does not trace program flow outside of the program range start/end addresses. The Trace in Range action is useful when you
can limit the problem to a specific program address range. This is particularly useful in debugging Interrupt Service Routines, which otherwise can not be debugged by setting
breakpoints. Collecting Time Stamp information for ISRs is useful for determining if you are exceeding the time in which the interrupt must be serviced.

� Don't Trace In Range – The Don't Trace In Range action allows you to specify a particular program address range not to trace, such as a particular function or range of functions
contiguous in memory (such as ISRs). The Don't Trace In Range action helps keep Interrupt Service Routine code from using space in the trace Receiver’s buffer when the problem
is known not to be in the ISR.

� End All Trace – The End All Trace action turns off all tracing. That is, the trigger for a Start Trace action will not cause Trace to start recording again after an End All Trace trigger
has occurred. The End All Trace action is useful if you have more than one Start Trace action and wish to turn off all tracing at a particular program address location or range in
your program flow. If you explicitly hit the Start button in the Trace Display or have the Synchronize Trace with Target Execution Trace Control option on, then recording will start
again when the trigger for a Start Trace action occurs.

� Trace Variable – The Trace Variable action allows you to specify a variable name or absolute data address for which trace collection should occur. The Trace Variable action is useful
when you know that a specific variable is being corrupted. Turning on the Collect PC w/Data option shows you the code that corrupted the data. It is important to note that you
should not specify stack variables since their address is program-flow dependent. Another good example use of Trace Variable is to set a breakpoint beyond the initialization of a
DSP data table and then add a Trace Variable action with the range of the data table to see how its values are changing. You can then export the data to a spreadsheet for
graphing.

� Store Sample – The Store Sample action records trace data for the current cycle whenever the trigger for the action is true. The Store Sample action is useful since it allows data
memory, or event triggers, which some other Trace action do not. Thus, you can collect trace data whenever a write occurs to a data address range, not just one address as in the
Trace Variable action. Or you can collect trace data whenever a particular event occurs, for example a cache hit or miss, or an interrupt acknowledge.

� Don't Store Sample - The Don’t Store Sample action prevents recording trace data for the current cycle whenever the trigger for the action is true. The Don’t Store Sample action
takes precedence over the Store Sample action. The general use of the Don’t Store Sample action would be to prevent Store Sample actions from taking place under certain trigger
conditions, such as eliminating a sub-range of a data address range (e.g., do not record data for accesses to array elements 6-10).

� Insert Trace Marker – The Insert Trace Marker action records a special marker within the trace data whenever the trigger for the action is true. This marker is identified in the Trace
Status column of the Trace Display with the message Trace Marker. Like the Store Sample action, the Insert Trace Marker action allows data memory, or event triggers. Thus, the
Insert Trace Marker action can be used as an indication that you have reached a particular location in your program flow, that a write access to a particular data memory range has
occurred, or a specific event has occurred, such as a cache hit or miss, a CPU stall, and so on.

All Trace actions allow you to specify what trace information to collect: Program Address, Write Address, Read Address, and so on. The more types of data you ask to collect, the more
likely you will exceed the ability of the Trace Hardware to collect and transmit all of the data off the chip. You can prevent this by choosing the option in the Trace Control Advanced
Settings… dialog to stall the CPU to allow the Trace Hardware time to export all data. Be aware that stalling the CPU has an impact on the real time aspect of your program.

There are many other Trace System options in both the Trace Control and the Trace Display which are meant to help you debug and optimize your target code. Please explore these
options and use the online help, which explains the options and their potential uses. For example, the Event Sequencer includes trace actions that, combined with the AET state machine
HW capabilities, provide you with more precise control over trace collection in complex program flow situations.

Page 18 of 18Trace Tutorial Overview

11/09/2010file://C:\Documents and Settings\degrysep\Local Settings\Temp\~hh607E.htm

