
DSP/BIOS Driver
Developer's Guide

DDK version 1.20

Literature Number: SPRU616A
August 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily per-
formed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate de-
sign and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating to
any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters
stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

This is a draft version printed from file: dddgpref.fm on 8/1/05
Preface

Read This First

About This Manual
DSP/BIOS provides a recommended structure for the development and
integration of drivers. This structure is described in this manual. For overview
information about DSP/BIOS, see the DSP/BIOS online help and the
TMS320 DSP/BIOS User�s Guide (SPRU423).

Notational Conventions
This document uses the following conventions:

❏ In file paths, BIOS_INSTALL_DIR is the folder where you installed
DSP/BIOS.

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis; interactive displays use a bold version
of the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error
messages, etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;
}

Software Version Requirements
This manual is intended for use with version 1.20 of the Driver Developer�s
Kit (DDK). You must have installed DSP/BIOS version 5.20 or higher to use
this version of the DDK.
iii

 Related Documentation From Texas Instruments
Related Documentation From Texas Instruments
The following books describe TMS320 devices and related support tools. You
can find these books on the Texas Instruments web site at www.ti.com.
Search for the literature number to find the book you want.

TMS320 DSP/BIOS User's Guide (literature number SPRU423) provides an over-
view and description of the DSP/BIOS real-time operating system.

TMS320C6000 DSP/BIOS Application Programming Interface (API)
Reference Guide (literature number SPRU403) describes DSP/BIOS API
functions, which are alphabetized by name. The API Reference Guide is the
companion to this user�s guide.

TMS320C5000 DSP/BIOS Application Programming Interface (API) Refer-
ence Guide (literature number SPRU404) describes DSP/BIOS API func-
tions, which are alphabetized by name. The API Reference Guide is the com-
panion to this user�s guide.

TMS320C28x DSP/BIOS Application Programming Interface (API) Reference
Guide (literature number SPRU625) describes DSP/BIOS API functions,
which are alphabetized by name. The API Reference Guide is the companion
to this user�s guide.

TMS320C54x Chip Support Library API Reference Guide (literature number
SPRU420) describes the Chip Support Library (CSL) API modules and func-
tions.

TMS320C55x Chip Support Library API Reference Guide (literature number
SPRU433) describes the Chip Support Library (CSL) API modules and func-
tions.

TMS320C6000 Chip Support Library API Reference Guide (literature number
SPRU401) describes the Chip Support Library (CSL) API modules and func-
tions.

Related Documentation
You can use the following books to supplement this reference guide:

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C, Kochan, Steve G., Hayden Book Company
iv

Trademarks
Programming Embedded Systems in C and C++, by Michael Barr, Andy
Oram (Editor), published by O'Reilly & Associates; ISBN: 1565923545,
February 1999

Real-Time Systems, by Jane W. S. Liu, published by Prentice Hall; ISBN:
013099651, June 2000

Principles of Concurrent and Distributed Programming (Prentice Hall
International Series in Computer Science), by M. Ben-Ari, published by
Prentice Hall; ISBN: 013711821X, May 1990

American National Standard for Information Systems-Programming
Language C X3.159-1989, American National Standards Institute (ANSI
standard for C); (out of print)

Trademarks
MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code
Explorer, DSP/BIOS, RTDX, Online DSP Lab, TMS320, TMS320C28x,
TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000,
and TMS320C6000.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.
Read This First v

vi

This is a draft version printed from file: dddgTOC.fm on 8/1/05
Contents

1 About the Device Driver Developer�s Kit .1-1
This chapter provides an overview of the DSP/BIOS Device Driver Developer�s Kit.
1.1 Using this Book. .1-2
1.2 Installing the DDK. .1-3
1.3 DSP/BIOS Driver Development Kit Overview. .1-3
1.4 Kit Contents and Organization .1-6
1.5 Using the Example Applications .1-8

2 DSP/BIOS Device Driver Architecture and Usage .2-1
This chapter describes the architecture of the DSP/BIOS device driver strategy.
2.1 Two-Level Device Driver Model .2-2
2.2 Driver Data Flow. .2-5
2.3 Class Driver Overview .2-11

3 Using DSP/BIOS Device Drivers .3-1
This chapter describes how the DSP/BIOS device driver model can be configured for use with
SIO, PIP, or GIO objects.
3.1 Registering the Mini-Driver .3-2
3.2 Configuring the DIO Class Driver (for SIO) .3-4
3.3 Configuring the PIO Class Driver (for PIP) .3-7
3.4 Configuring Applications to Use the GIO Class Driver .3-10

4 GIO Class Driver .4-1
This chapter describes the GIO module, which provides a class driver.
4.1 About the GIO Module .4-2
4.2 Implementation Details for GIO .4-3
4.3 Error Handling .4-5
4.4 Extending the GIO API .4-5

5 Developing a Mini-Driver Step-by-Step .5-1
This chapter shows a step-by-step process for developing a mini-driver.
5.1 Mini-Driver Design and Implementation .5-2
5.2 Examining the �C5402 SBS Mini-Driver Example. .5-6
vii

 Contents
A IOM Interface . A-1
This appendix provides reference details for the IOM (I/O Mini-driver) interface.
A.1 Mini-Driver Interface Overview. A-2

B PIO Adapter . B-1
This appendix provides reference details for the PIO (Pipe I/O) adapter interface.
B.1 PIO Adapter Interface Overview . B-2

C Porting from the LIO to IOM Model . C-1
This appendix compares the LIO and IOM models and explains how users of the LIO device driver
model can migrate applications to use the updated IOM device driver model.
C.1 Comparing the LIO and IOM Models . C-2
C.2 Migrating an LIO Application to Use an IOM Mini-Driver . C-4
C.3 Migrating an LIO Controller to an IOM Mini-Driver . C-5

D The ASYNC Extension to the GIO API. D-1
This appendix describes the ASYNC extension to the GIO API.
D.1 ASYNC Module Overview . D-2

E Glossary. E-1
This appendix provides definitions for terms related to device drivers.
viii

ix

This is a draft version printed from file: dddglof.fm on 8/1/05

Figures

1-1 Device Developer�s Kit Folder Organization ... 1-7
2-1 Application Architecture Showing Device Driver Components 2-3
2-2 Mini-Driver Operation Flow ... 2-6
2-3 Call Flow for Blocking GIO_read and GIO_write .. 2-9
3-1 GIO Module Configuration .. 3-10
4-1 GIO Class Driver Interface.. 4-3
5-1 PIO Adapter Buffer Flow ...B-4
5-2 Call Flow for ASYNC_read and ASYNC_write ...D-3

x

This is a draft version printed from file: dddglot.fm on 8/1/05

Tables

5-1 Component Comparison for LIO and IOM ...C-2
5-2 Function Comparison for LIO and IOM ..C-3

Chapter 1

About the Device Driver Developer�s
Kit

This chapter provides an overview of the DSP/BIOS Device Driver
Developer�s Kit.

1.1 Using this Book . 1�2
1.2 Installing the DDK . 1�3
1.3 DSP/BIOS Driver Development Kit Overview 1�3
1.4 Kit Contents and Organization. 1�6
1.5 Using the Example Applications . 1�8

Topic Page
1-1

Using this Book
1.1 Using this Book

Depending on whether you are an application developer/integrator or a
driver developer, different sections of this book will be of interest to you.

1.1.1 For Application Developers and Integrators

If you are an application developer who will integrate drivers developed
by others, read the following sections of this manual:

❏ Chapter 1. This chapter provides an overview of the Driver
Developer�s Kit (DDK). In particular, note the sections that describe
the functional device drivers included in the kit and how to build the
example applications that use the drivers.

❏ Chapter 2. All sections are of interest to application developers.

❏ Chapter 3. Read this to learn how to configure and use the DIO
adapter, PIO adapter, and GIO class driver.

❏ Chapter 4. Read this to learn about the GIO class driver module.

❏ Appendix B. Read this to learn about the PIP class driver adapter.

❏ Appendix C. If you have used the LIO driver model before, read
Sections C.1 and C.2.

❏ Appendix D. Read this appendix if you want to use a mini-driver
asynchronously (without blocking�for example, with SWI threads).

❏ Appendix E. See this glossary if you encounter unfamiliar terms.

1.1.2 For Driver Developers

If you are a driver developer, read the following sections of this manual:

❏ Chapter 1. This chapter provides an overview of the Driver
Developer�s Kit (DDK).

❏ Chapter 2. Sections 2.1 through 2.2 are of interest to driver
developers.

❏ Chapter 5. Read this chapter for step-by-step instructions to create
a mini-driver and a detailed overview of a sample mini-driver.

❏ Appendix A. Read this for details about the mini-driver specification.

❏ Appendix C. If you have used the LIO driver model before, read
Sections C.1 and C.3.

❏ Appendix E. See this glossary if you encounter unfamiliar terms.
1-2

Installing the DDK
1.2 Installing the DDK

Note:

This manual is intended for use with version 1.20 of the Driver
Developer�s Kit (DDK). You must have installed DSP/BIOS version
5.20 or higher to use this version of the DDK.

Install the DDK by running the setup.exe file you downloaded. Answer the
prompts as necessary.

After you install the DDK, be sure to define the environment variables
DDK_INSTALL_DIR and CSL_INSTALL_DIR as described in the
SetupGuide.html file. Also, define the BSL_INSTALL_DIR environment
variable if you are using a board that requires Spectrum Digital�s Board
Support Library. You should have the BIOS_INSTALL_DIR environment
variable defined as described in the SetupGuide.html file for DSP/BIOS.

1.3 DSP/BIOS Driver Development Kit Overview

The DSP/BIOS Driver Developer�s Kit (DDK) is designed to simplify the
development of device drivers for peripherals present on TMS320 DSPs
and their associated evaluation boards. To achieve this goal, the DDK
provides:

❏ Fully functional device drivers for many TMS320 DSP peripherals

❏ A documented driver model that standardizes the methodology for
developing drivers

❏ A set of reusable driver modules that eliminate the need to develop
all driver code from scratch

The DDK is complementary to the Chip Support Library (CSL), which is
provided for each TMS320 DSP. The CSL provides low-level hardware
abstractions of DSP peripheral registers and initialization functions. The
drivers in the DDK make full use of the CSL for peripheral initialization
and control.

The following subsections provide an overview of each of the DDK's
elements in more detail to give a greater understanding of their purpose.
About the Device Driver Developer�s Kit 1-3

DSP/BIOS Driver Development Kit Overview
1.3.1 Functional Device Drivers

The DDK offers a number of complete device drivers for peripherals such
as codecs, UARTs, and serial ports. These drivers are provided in both
binary and source code form. Extensive documentation is provided for
each driver, including memory requirements and a design overview that
explains how the driver works.

DDK drivers are targeted specifically at on-chip DSP peripherals or
external peripherals on DSP evaluation boards, such as audio codecs.
Each driver is thoroughly tested on a specific board to validate correct
real-time behavior. These drivers enable a developer to immediately
begin using a supported peripheral with no driver development effort at
all. The availability of source code makes it straightforward to port the
driver to custom board configurations using the same peripherals.

1.3.2 Documented Driver Model

The DDK defines a standard driver model and set of APIs for developing
drivers. To simplify driver development, the driver model breaks a driver
into two components:

❏ Class driver. The upper layer is called a �class driver�. The class
driver is device-independent and performs functions such as buffer
management and application synchronization. A class driver typically
includes both an API interface used by the application and an
adapter layer that acts as an interface between the application calls
and the mini-driver.

❏ Mini-driver. The lower layer is called the �mini-driver.� It handles all
the device-specific control and initialization. All mini-drivers conform
to a standard interface called the IOM (I/O Mini-driver) interface. This
was designed after reviewing a wide range of devices including serial
ports, video ports, flash cards, UARTs, and PCI controllers.

The layered driver model defined by the DDK provides several benefits
to driver developers:

❏ A driver developer only has to learn a single mini-driver API to
implement drivers for a full-range of DSP peripherals.

❏ A mini-driver is simpler to implement than a full driver, because the
TI-developed class driver handles the common buffer management
and synchronization activities.
1-4

DSP/BIOS Driver Development Kit Overview
This layered driver model also provides several benefits to application
integrators:

❏ The standard mini-driver API allows class drivers to work with mini-
drivers.

❏ A mini-driver developed for a codec can, for example, be used with
any of the pre-defined DSP/BIOS I/O modules such as SIO or PIP.
There is no need to rewrite a driver because a different I/O API is
desired.

❏ If a developer wants to implement an alternative set of I/O APIs to
those provided by DSP/BIOS, they can implement a new class driver
or extend an existing class driver.

1.3.3 Reusable Class Driver Modules

As discussed in the previous sections, the driver model inherently
enables modules to be easily reused. The DDK provides three class
drivers that can be used with any mini-driver designed according to the
model:

❏ SIO/DIO. The DIO adapter allows the DSP/BIOS SIO module to be
used with a mini-driver. The combination of these two modules is a
class driver. Rather than calling DIO APIs, the application calls SIO
functions that use the DIO adapter internally.

❏ PIP/PIO. The PIO adapter allows the DSP/BIOS PIP module to be
used with a mini-driver. The combination of these two modules is a
class driver. The application calls both PIP and PIO API functions
when using this class driver.

❏ GIO. The GIO module implements a set of I/O APIs that may be used
with DSP/BIOS to interface to a mini-driver. The GIO module on its
own is a class driver option.

The GIO class driver is designed to support easy extension of I/O APIs
to meet the needs of specialized devices. For example, the ASYNC
module provided in the DDK is an example extension designed for
asynchronous data processing. In addition, specialized APIs�such as
frame video APIs�can be easily be created.

In addition to the class drivers, a selection of mini-drivers is provided that
clearly illustrate how to develop the device-specific code for a variety of
peripherals. The existing mini-drivers can act as an initial template for
developing support for a new peripheral.

To simplify the development of codec and data converter mini-drivers, the
DDK provides a generic DMA-McBSP driver. This module can be re-used
About the Device Driver Developer�s Kit 1-5

Kit Contents and Organization
as part of any codec mini-driver. As a result, the developer only need
implement a very small amount of codec initialization and control code to
generate a new driver. All of the audio codec mini-drivers that are
included in the DDK use this approach. See the individual application
notes provided for these mini-drivers for more details.

All the modules available through the DDK are provided in source-code
form and may be customized if desired.

1.4 Kit Contents and Organization

The Device Developer�s Kit (DDK) folder tree contains a number of mini-
drivers and example applications. For each mini-driver, source files, a
CCStudio project, and pre-built libraries are provided.

The following HTML files are provided to describe the DDK and its
contents:

❏ SetupGuide.html. Contains setup instructions.

❏ index_ddk_manuals.html. Provides links to the various PDF
documents in the kit.

❏ release_notes.html. Contains product release notes.

You can further explore the DDK by examining the folder tree. We
recommend that you retain the provided structure for your development.

All files associated with a given driver are contained within a subfolder for
that driver. This is a change from previous versions of the DDK, in which
common files were stored in a common location and shared by drivers.
The new folder structure is intended to allow for updates to drivers and
the addition of new drivers without affecting other drivers.

The DDK installation has a top-level folder called ddk_1_20. It is located
where you choose to install it. Figure 1-1 shows the main folder
organization of the DDK.
1-6

Kit Contents and Organization
Figure 1-1. Device Developer�s Kit Folder Organization

The individual drivers are stored in folders with names like
c55xx_dma_mcbsp and dsk6713_edma_aic23. Within these folders, the
file structure is similar to one of the following depending on whether one
platform or multiple platforms can use this driver:

One Platform for driver Multiple platforms
About the Device Driver Developer�s Kit 1-7

Using the Example Applications
The top-level folder for each driver (and the platform-named folders for
drivers with multiple platforms) contain the following files:

❏ Source files. These are typically a .c and .h file named to match the
driver. Some drivers use additional source files.

❏ CCStudio project file (*.pjt). This contains settings for the debug
and release versions to build a library file.

❏ Package files. You can ignore package files and folders. They are
included to support packaging, versioning and RTSC build systems.

The debug and release folders contain pre-built libraries for the various
drivers. Each driver folder contains a �doc� folder with an Adobe Acrobat
*.pdf file that describes the driver.

In addition to the driver folders, the DDK contains the following additional
folders:

❏ shared. Contains the aic23.h file, which supports the aic23 codec
and is used by several drivers. Also contains the async.h file, which
is used by the ASYNC module.

❏ examples. This tree contains source, project, and configuration
scripts for several applications that use the provided mini-drivers.
Pre-built executables are not provided. See the readme files and
source code comments for descriptions of the examples.

❏ pio. Contains the PIO adapter API source, projects, and libraries.

1.5 Using the Example Applications

The DDK includes some example applications that integrate mini-drivers
in various ways. These files are located in the examples folder tree. You
can open the project file (*.pjt) for an example in Code Composer Studio
and examine the source code and the DSP/BIOS configuration. Projects
and configurations are provided for several mini-drivers for each
example.

❏ audio folder

� tsk_audio. This example demonstrates how an application can
use a codec mini-driver via the SIO module in TSK threads. This
is a loopback application. Audio is read from an input SIO, then
sent back out on an output SIO. This application is configured to
use the DIO adapter. This example is provided for a number of
codec drivers. When you examine the configuration, notice the
TSK, UDEV, and DIO objects. The SIO objects are created
dynamically at run-time.
1-8

Using the Example Applications
� swi_audio. This example demonstrates how an application can
use a codec mini-driver via the SIO module in SWI threads. This
is a loopback application. Audio is read from an input SIO, then
sent back out on an output SIO. This application is configured to
use the DIO adapter in callback mode. This example is provided
for a number of codec drivers. When you examine the
configuration, notice the SWI, UDEV, and DIO objects. The SIO
objects are created dynamically at run-time.

� pip_audio. This example demonstrates how an application can
use a codec mini-driver via the PIP module in SWI threads. This
is a loopback application. Audio is read from an input PIP, then
sent back out on an output PIP. This application uses the PIO
adapter. This example is provided for a number of codec drivers.
When you examine the configuration, notice the PIP, SWI, and
UDEV objects.

❏ uart folder

� uarttest. This example demonstrates synchronous (blocking)
use of the mini-drivers for the UART. It uses TSK threads and the
GIO class driver API. When you examine the configuration,
notice the TSK and UDEV objects. The GIO objects are created
dynamically at run-time.

Additional test examples may be added to the DDK in the future to
support additional types of devices
About the Device Driver Developer�s Kit 1-9

1-10

Chapter 2

DSP/BIOS Device Driver Architecture
and Usage

This chapter describes the architecture of the DSP/BIOS device driver
strategy.

2.1 Two-Level Device Driver Model . 2�2
2.2 Driver Data Flow . 2�5
2.3 Class Driver Overview. 2�11

Topic Page
2-1

Two-Level Device Driver Model
2.1 Two-Level Device Driver Model

As DSP real-time systems become more complex and new technologies
emerge, the variety and number of peripheral devices grows. Writing and
porting device drivers for such peripheral devices has been an innately
hardware- and OS-dependent task. Sometimes, it has been a difficult
undertaking given DSP system constraints such as memory footprint,
response time, and power management.

Device driver writers have benefited from a model that divides device
driver functionally into separate hardware-independent and hardware-
dependent layers. Using common interfaces for each layer allows
software reuse of major portions of similar device drivers and simplifies
the driver development process.

Such partitioning of device driver software is sometimes referred to as the
�class/mini-driver model�.

❏ Class driver. The class driver typically provides serialization and
synchronization of multi-threaded I/O requests. In addition, it handles
device instance management. In typical real-time systems, only a
few class drivers, at most, are needed to represent the types of
devices used to the application, including block I/O, character I/O,
and video.

❏ Mini-driver. The class driver uses a device-specific mini-driver to
operate on a particular device on behalf of the application software.

The mini-driver writer must have the ability to efficiently represent a
particular device to the class driver. For example, a video display device
may have on-board frame buffer memory that an application may need to
allocate from in order to perform the desired I/O operation efficiently.
Also, a video class driver may need to represent an I/O request as a set
of disjointed memory buffers, such as RGB or YUV components, so the
lower level mini-driver can efficiently interact with the video hardware.

An effective driver model allows driver services to efficiently represent I/O
requests to mini-drivers in the form of I/O request packets, containing
information in a structure defined by the driver writer.

Device driver reusability can be enhanced by starting with the class
driver/mini-driver partitioning and then adding the ability to richly express
device I/O requests to the mini-driver.
2-2

Two-Level Device Driver Model
2.1.1 Application Architecture Overview

Figure 2-1 shows relationships between the layers in an application that
uses the two-layer device driver model described in this document.

Figure 2-1. Application Architecture Showing Device Driver Components

As this figure shows, the high-level application does not interact with
mini-drivers directly. Instead, it uses one or more class drivers to interface
with the mini-driver(s).

Each class driver presents an API to the application code and
communicates with the IOM mini-driver interface. A class driver uses the
DSP/BIOS API for OS services such as synchronization. It calls the
standard mini-driver interface to access peripheral hardware devices.

DSP/BIOS currently defines the three class drivers shown in this figure:
PIP/PIO, SIO/DIO, and GIO. In the case of the PIP/PIO and SIO/DIO
class drivers, the APIs used by the application are the existing DSP/BIOS
PIP and SIO functions. These APIs talk to the corresponding adapter,
which communicates with the mini-driver. In the case of the GIO class
driver, the application calls these APIs, which interfaces directly with the
mini-driver.

More than one type of class driver may exist simultaneously in an
application. Application writers can choose to use one or all of these in
a system. Mini-driver writers typically do not need to write class drivers.

Application / Fram ew ork

SIO APIsPIP APIs

PIO Adapter DIO Adapter
G IO APIs

IO M M ini-Driver(s)

Device
Driver

O n-Chip Peripheral Hardw are

Chip Support L ibrary (CSL)

O ff-Chip Peripheral Hardw are

Class
Driver

M ini-
Driver
DSP/BIOS Device Driver Architecture and Usage 2-3

Two-Level Device Driver Model
Each mini-driver exports standard mini-driver interface functions for class
drivers to use to access the hardware and for DSP/BIOS device driver
management. Mini-drivers use the Chip Support Library (CSL) to
interface to the peripheral hardware's register, memory, and interrupt
resources. Some mini-drivers may optionally include a codec-specific
sub-driver.

2.1.2 Driver Initialization and Binding

Every DSP/BIOS module used by an application contains an initialization
routine that is called by DSP/BIOS during DSP/BIOS initialization. Mini-
drivers are treated like other DSP/BIOS modules. The initialization
function of each registered mini-driver is called during the initialization of
the DSP/BIOS DEV module.

The calling order of mini-driver initialization functions is determined by the
order in which the mini-drivers were configured.

Each mini-driver's function table exports a binding (mdBindDev) function
that gets called by DSP/BIOS after all the driver initialization functions
have been called.

The parameters to the mdBindDev function (devp, devid, and
devParams) are used to send the configuration parameters described in
Section 3.1, Registering the Mini-Driver, page 3-2 to the mini-driver. For
example, information about IRQ levels and statically-declared global
memory may be passed via these parameters. The class driver also
passes the devp and chanParams information to calls that create a
channel (mdCreateChan) for the particular device. This allows device
instances to share global data and allows a mini-driver to use a particular
configured memory area.

2.1.3 Device and Channel Instances

The device driver model includes two types of object instances:

❏ Device instances. This is an abstraction of an actual peripheral
device of some kind, like an audio codec or a video port peripheral.
Device instances are registered (configured) in DSP/BIOS in the
device table as described in Section 3.1, Registering the Mini-Driver,
page 3-2. Applications refer to them by their "logical" names. If
multiple device instances are configured, each has a unique logical
name in the DSP/BIOS device table.

❏ Channel instances. This is an abstraction of a communication path
between the application and a device instance. Channel instances
are created through a call to the mini-driver�s mdCreateChan
2-4

Driver Data Flow
function, which runs as a result of a call from the class driver (for
example, SIO_create, PIO_create, or GIO_create).

A DSP system may have more that one physical device of the type
abstracted by a device instance. Maintaining distinct driver states to allow
the same mini-driver code to be used for multiple devices is an important
feature of the driver. DSP/BIOS drivers are not required to support multi-
device instancing, but it is strongly recommended if multiple hardware
peripherals of the same type are possible. For example, most TI DSPs
have multiple McBSP peripherals, so we support this in the DDK drivers
that use the McBSP.

A given device instance may support multiple channel instances. An
important attribute of a channel instance is the directional mode of
operation. For mini-drivers, channel modes can be data input only, data
output only, or both input and output (bi-directional). Mini-drivers not
supporting one or more modes return an error status if an application
attempts to create a channel with an unsupported channel mode.

2.2 Driver Data Flow

This section provides an overview of the flow of data from the application
to the driver to the physical device.

Figure 2-2 shows the mini-driver call flow as used by the class driver. The
IOM_Packets shown in this figure are standard data structures used to
submit requests to a mini-driver. They contain a pointer to the data buffer.
DSP/BIOS Device Driver Architecture and Usage 2-5

Driver Data Flow
Figure 2-2. Mini-Driver Operation Flow

2.2.1 Channel Instance Handles

Before data communication between an application and a device can
begin, a channel instance handle must be returned to the application by
the mini-driver�s mdCreateChan function.

Depending on the class driver used by the application, the channel
instance pointed to by a channel handle can represent point-to-point data
streams (SIO) or pipes (PIP). In any case, the channel handle represents
a unique communication path between the application and a mini-driver.
All subsequent operations that talk to the driver use this channel handle.

The amount of resources�such as memory�consumed by each
channel instance depends upon both the mini-driver and adapter's
implementation of a channel. A channel object typically maintains data
fields related to a channel's mode, I/O request queues, and possibly

ISR processing

ca
llb

ac
k

F
xn

device H/W

IOP list

m ini-driver
(typical)

m
dC

re
at

eC
ha

n

m
dS

ub
m

itC
ha

n

m
dC

on
tr

ol
C

ha
n

m
dD

el
et

eC
ha

n

device
global
data

channel
instance

IOP IOP

Channel &
Device
specific
control

In
te

rr
up

t(
s)

DSP/BIOS
(BIOS_init)

mdBindDev

class driver
(DIO, PIO, GIO, etc)

Application
PIP API GIO API othersSIO API

Mini-driver

mdUnBindDev

IOM _Packet
IOM _Packet

IOM _PacketIOM _Packet
2-6

Driver Data Flow
driver state information. The total memory size required for each channel
instance can vary greatly for different adapter and mini-driver
implementations. Applications should relinquish channel resources by
deleting all channel instances when they are no longer needed.

2.2.2 IOM Packets

The IOM_Packet data structure is used by IOM drivers to submit requests
to a mini-driver. This standard data structure is equivalent to the
DSP/BIOS DEV_Frame structure, which has been modified to include a
command (cmd) field and a command status field. The IOM_Packet
structure is defined as follows:

typedef struct IOM_Packet { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 /* two fields added for use by IOM */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} IOM_Packet;
The two new fields extend the DSP/BIOS DEV_Frame structure to allow
a richer set of I/O operations to be passed between the application and
mini-driver. Applications themselves do not have access to IOM_Packet
structures. Only class drivers, adapters, and mini-drivers have access to
these packets. The mini-driver command (cmd) value constants allow the
mdSubmitChan function to be called to read from, write to, abort, or flush
the channel.

The IOM_Packet is a fixed-sized structure used by both the GIO and IOM
modules. An IOM_Packet represents a single I/O request to the mini-
driver. The mini-driver processes the request and returns the packet back
to the class driver by calling the class driver�s callback function. (See
Section 2.2.4, I/O Request Submissions.)

IOM_Packet structures are created by class drivers and referenced in a
mini-driver�s channel object.

When an application submits an I/O request, the class driver fills in the
fields of an IOM_Packet before submitting it to the mini-driver.
GIO_submit (and related calls such as GIO_read and GIO_write) acts on
the fields in the IOM packet as follows before submitting it:
❏ QUE_Elem link; /* queue link */

Used internally for queueing. May be used by the mini-driver.
DSP/BIOS Device Driver Architecture and Usage 2-7

Driver Data Flow
❏ Ptr addr; /* buffer address */
The class driver sets this field to the bufp parameter passed to it. This
parameter points to a data structure or buffer data. The mini-driver
should preserve the value of this parameter.

❏ Uns size; /* buffer size */
The class driver sets this field to the size of the buffer data structure
as provided by the pSize parameter. The mini-driver should update
this size field if the actual size is different than requested.

❏ Arg misc; /* miscellaneous item */
The class driver sets this field to the application-specified callback
function. The mini-driver should not change this field.

❏ Arg arg; /* user argument */
This field is not used by GIO. It is used by other class drivers.

❏ Uns cmd; /* command for mini-driver */
The class driver sets this field to the cmd parameter passed to it. The
mini-driver uses this command code to determine which operation to
perform in mdSubmitChan. The mini-driver may not change this field.

❏ Int status; /* status of command */
The mini-driver should set this status before calling the callback
function. If the action was successful, the status should be set to
IOM_COMPLETED. If failure occurred, the mini-driver should set the
status to the appropriate IOM error code. The class driver returns this
status to the application.

2.2.3 Channel Operations

Once a channel has been created with mdCreateChan, the adapter can
invoke channel operations in two ways:

❏ mdSubmitChan. Submits an I/O request in the form of an
IOM_Packet.

❏ mdControlChan. Invokes a driver-specific control call.

Mini-driver channels are not required to serialize access from multiple
calling contexts (for example, multiple tasks). Serialization is the
responsibility of either the application or some higher-level software. This
simplifies the mini-driver design.
2-8

Driver Data Flow
Figure 2-3 shows the call flow resulting from a synchronous read or write
call as it passes through the GIO class driver and IOM mini-driver levels
of an application.

Figure 2-3. Call Flow for Blocking GIO_read and GIO_write

2.2.4 I/O Request Submissions

When a mini-driver receives an IOM_Packet via an mdSubmitChan call,
the mini-driver can attempt to complete the request and if so return
immediately to the caller, or it can queue the request for later completion.

When a mini-driver completes its processing, usually in an ISR context,
it calls its associated callback function to pass the IOM_Packet back to
the class driver. The submit/callback function pair handles the passing of
IOM_Packets between the class driver and mini-driver. Before an
IOM_Packet is passed back to the class driver, the mini-driver must set
the completion status field and the data size field in the IOM_Packet. This

Application

Class driver
(GIO)

Mini-driver
(IOM)

Hardw are

GIO_submit

mdSubmitChan

complete

 Calling Context

appCallback(arg, status,
 bufp, size)

_isr

IOM _Packet

bufp data
structure

bufp data
structure

ISR Context

Read / W rite

pending

no
n-

bl
oc

ki
ng

complete

GIO post fxn

GIO pend fxn

Un-
Block

Block

IOM _Packet
DSP/BIOS Device Driver Architecture and Usage 2-9

Driver Data Flow
status value and size are returned to the application call that initially
made the I/O request.

Note:

Mini-drivers must be written so that they can handle situations in which
the class driver makes submit calls (via mdSubmitChan) faster than the
mini-driver can complete them. In other words, the mini-driver should
queue up IOM_Packets if necessary for later processing.

2.2.5 Device Control

Device control is device-dependent. The mini-driver�s mdControlChan
implements any control functionality that the mini-driver writer wishes to
provide to the application designer. The application may invoke such
control functionality through calls to GIO_control, SIO_ctrl, or PIO_ctrl.

The documentation for each mini-driver should provide a list of supported
"control codes." Control codes not supported by a mini-driver must return
the error code IOM_ENOTIMPL.
2-10

Class Driver Overview
2.3 Class Driver Overview

DSP/BIOS supports two models for data transfer. One is the stream
model, which is implemented by the SIO module. The other is the pipe
model, which is implemented by the PIP module. Both of these models:

❏ Require that a pipe or stream has a single reader and single writer
thread.

❏ Transfer buffers within the pipe or stream by copying pointers rather
than by copying data.

❏ Are designed to manage block I/O (also called asynchronous I/O).

Both of these data transfer models can interface to IOM mini-drivers
using adapters provided for use as part of a class driver.

The first adapter is the SIO adapter (DIO), which is used with the SIO
module. The second adapter is the PIP adapter (PIO), which is used with
the PIP module. See the DSP/BIOS User's Guide for an in-depth
discussion of the DSP/BIOS stream and pipe models.

This DDK introduces a third data transfer model targeted more
specifically to file system I/O and character based UART applications.
This data transfer model is a stream-based synchronous I/O model that
exposes more traditional read and write APIs to the application and is
made available though the General I/O (GIO) class driver. The GIO class
driver was written to adapt directly to the IOM interface and therefore has
a built-in IOM adapter layer.

For many character I/O or file system application domains, GIO is a
preferable data transfer model over the asynchronous block I/O models
provided by SIO and PIP. Of course, there is overlap when deciding to
use one model versus another. Ease of use and overhead should always
be considered for any given application.

2.3.1 The SIO Adapter (DIO)

The DSP/BIOS streaming I/O (SIO) module provides a high-level device
independent I/O mechanism for use with DSP/BIOS threads. SIO offers
the ability to dynamically create SIO objects at run-time.

To provide this ability, SIO has its own device driver model, called DEV.
DEV is described in detail in the DSP/BIOS manuals and on-line help.
Writing a DEV is similar to writing an IOM mini-driver in that a small set
of device-specific functions, such as open, close, and buffer
management, are implemented and accessed by an SIO object through
a function table. DEV drivers are generally more difficult to write than IOM
DSP/BIOS Device Driver Architecture and Usage 2-11

Class Driver Overview
mini-drivers because they require a higher level of DSP/BIOS
knowledge. In addition, a DEV driver can only be used with SIO�it
cannot be used with PIP or on its own.

The SIO adapter, also called DIO, is designed to easily integrate streams
with the IOM mini-driver model. Communication and synchronization are
accomplished with minimal overhead and complexity. The DIO adapter
uses the following basic types of functions:

❏ Callback functions. The callback functions are the signaling
interface between the mini-driver and the adapter. During device
driver channel creation, the adapter tells the mini-driver which
functions to call when it finishes with the buffer. This callback signals
the adapter when a buffer is ready to be sent back to the buffer
manager and ultimately, the application.

❏ Transfer function. This function calls the mini-driver's
mdSubmitChan function. The mdSubmitChan function of the mini-
driver receives a buffer from the adapter and then communicates the
new buffer information to the ISR. This communication is done
through the channel object. The DIO adapter uses these functions to
communicate between the application and the mini-driver.

To configure an application to use the DIO adapter, see Section 3.2,
Configuring the DIO Class Driver (for SIO), page 3-4.

2.3.2 The PIP Adapter (PIO)

The DSP/BIOS PIP module provides a "data pipe" service to manage
block I/O. Each pipe object maintains a buffer divided into a fixed number
of fixed-length frames. The size and number of frames for a PIP are set
in the DSP/BIOS Configuration Tool. Although each frame has a fixed
length, the application may put less than a full frame of data into a pipe.

A pipe has two ends; the writer end is where the program writes frames
of data. The reader end is where the program reads frames of data.

Typically, one end is a function that invokes an I/O device. Data
notification functions are performed to synchronize data transfer and are
triggered when a frame of data is read or written to notify the other end of
the PIP of the availability of a full or empty frame. A writer gets a frame to
put data into by calling the PIP_alloc function. After data is written to the
frame, the writer calls PIP_put. This call results in the notifyReader
function being called. When appropriate, the reader calls PIP_get to
retrieve the frame of data and then calls PIP_free when the data is no
longer required. The PIP_free call triggers the notifyWriter function and
the cycle begins again. The notify functions associated with a PIP object
are set by the user in the DSP/BIOS Configuration Tool.
2-12

Class Driver Overview
The PIP adapter, also referred to as PIO, is designed to obtain a buffer
from the application through the buffer manager and present it to the
mini-driver for consumption. The adapter also recognizes when the mini-
driver is finished processing the buffer and sends it back to the
application through the buffer manager. This communication is
accomplished with a minimal amount of overhead and complexity. The
PIO adapter uses the following basic types of functions:

❏ Prime functions. The PIP buffer manager calls rxPrime and txPrime
when the application sends a buffer to the device driver. These
functions use DSP/BIOS API calls to obtain a buffer from the buffer
manager and present it to the mini-driver. The "prime" functions are
the signaling interface between the application and the adapter.

❏ Callback functions. The rxCallback and txCallback functions are
the signaling interface between the mini-driver and the adapter.
During driver set up, the adapter tells the mini-driver which functions
to call when it finishes with the buffer. This callback signals the
adapter when a buffer is ready to be sent back to the buffer manager
and ultimately, the application.

❏ Transfer function. This function calls the device mini-driver's
mdSubmitChan function. The mdSubmitChan function of the mini-
driver receives a buffer from the adapter and then communicates the
new buffer information to the ISR. This communication is done
through the channel object. The PIO adapter uses these functions to
communicate between the application and the mini-driver.

To configure an application to use the PIO adapter, see Section 3.3,
Configuring the PIO Class Driver (for PIP), page 3-7. For details about
the PIO adapter, see Appendix B, PIO Adapter.

2.3.3 The GIO Class Driver

The GIO class driver implementation was designed to minimize code and
data size, while still providing the necessary common functionality for the
synchronous read/write APIs and extensions. The GIO API may be used
directly by applications to interface to IOM mini-drivers. These GIO APIs
act as a class driver.

To configure an application to use the GIO class driver, see Section 3.4,
Configuring Applications to Use the GIO Class Driver, page 3-10. For an
overview of the GIO adapter, see Chapter 4, GIO Class Driver. For
reference information about the GIO APIs, see the DSP/BIOS API
Reference (literature number SPRU404 for C5000, SPRU403 for C6000,
and SPRU625 for C2000).
DSP/BIOS Device Driver Architecture and Usage 2-13

2-14

Chapter 3

Using DSP/BIOS Device Drivers

This chapter describes how the DSP/BIOS device driver model can be
configured for use with SIO, PIP, or GIO objects.

This chapter demonstrates the use of mini-drivers with DSP/BIOS I/O
class drivers to build a DSP/BIOS application. As with most DSP/BIOS
modules, the mini-drivers along with the class driver objects can be
configured either in the DSP/BIOS Configuration Tool or by editing a
DSP/BIOS Tconf script manually.

Section 3.1, Registering the Mini-Driver, page 3-2 describes how to
configure an IOM mini-driver. This is required no matter which class
driver you plan to use.

The remaining sections demonstrate how to use an IOM mini-driver with
the DSP/BIOS SIO, PIP, and GIO class drivers. The class driver section
you should follow depends on which class driver you plan to use.

3.1 Registering the Mini-Driver. 3�2
3.2 Configuring the DIO Class Driver (for SIO) . 3�4
3.3 Configuring the PIO Class Driver (for PIP) . 3�7
3.4 Configuring Applications to Use the GIO Class Driver 3�10

Topic Page
3-1

Registering the Mini-Driver
3.1 Registering the Mini-Driver

To register an IOM mini-driver for use in a DSP/BIOS application, you
must configure the application to use that mini-driver. This configuration
is done statically, either though the DSP/BIOS Configuration Tool or a
DSP/BIOS Tconf script.

To configure a mini-driver in
the DSP/BIOS Configuration
Tool, follow these steps:

1) Create a new device
object by right-clicking on
User-Defined Devices (in
the Input/Output tree) and
selecting Insert UDEV
from the pop-up menu.

2) Rename the object. This
name identifies the
peripheral in application
code. For example, you
might name it �codec� if the mini-driver drives the codec and the
application code references it as �/codec�.

3) Right-click on the UDEV object you created and choose Properties.

4) In the Properties dialog, specify the properties to match those listed
in the mini-driver documentation for your particular mini-driver (the
*.pdf file in the doc folder). For example, the properties to specify for
the DSK5402_AD50 mini-driver are as follows:
3-2

Registering the Mini-Driver
� init function. Specify the driver initialization function name.

� function table pointer. Specify the name of the driver function
table. This table is mapped to the name given to this UDEV
object. This allows applications to refer to mini-drivers using a
name that need not be changed if a different mini-driver is used.

� function table type. Select IOM_Fxns if you plan to use a mini-
driver created according to the specifications described in this
document. The older Dxx drivers described in the DSP/BIOS API
Reference use a function table of type DEV_Fxns.

� device id. If the mini-driver documentation indicates that one
should be used, provide an integer value for the mini-driver to
use to distinguish this instance of the device. For example, some
DSPs have multiple devices of the same type (MCBSP0,
MCBSP1, etc.) This maps to the mini-driver�s mdBindDev devid
parameter.

� device params ptr. If the mini-driver documentation specifies it,
provide a pointer to a device-specific structure to be passed as
an input parameter to the mini-driver. This maps to the mini-
driver�s mdBindDev devParams parameter.

� device global data ptr. If the mini-driver documentation
specifies it, provide the memory location that contains the pointer
to global data used by the mini-driver. When ROMing device
drivers, it is useful to allow such memory to be allocated statically
outside the actual driver, which permits it to avoid any hard-
coded data references. This maps to the mini-driver�s
mdBindDev devp parameter.

Internally, devices configured as UDEV objects are included in a �device
table� maintained by DSP/BIOS.
Using DSP/BIOS Device Drivers 3-3

Configuring the DIO Class Driver (for SIO)
3.2 Configuring the DIO Class Driver (for SIO)

If your application uses the SIO (stream I/O) module DSP/BIOS APIs for
I/O, you must use the DIO adapter to interface with a mini-driver. The
combination of the SIO module and the DIO adapter creates a class
driver. The SIO functions communicate with the DIO adapter, which in
turn communicates with the mini-driver.

The DIO functions can either be configured for use with TSKs or SWIs via
a switch for "callback version of DIO function table". This switch should
be selected if using SWIs. The DIO functions can also be used with static
or dynamically created objects.

A DIO object cannot be created until an IOM mini-driver has been
registered.

3.2.1 Example Application

The tsk_audio example demonstrates how an application can use a
codec mini-driver with SIO streams and TSK threads. This example
application is configured to use the DIO adapter.

This example is provided for a number of codec drivers. When you
examine the configuration, notice the TSK, UDEV, and DIO objects. The
SIO objects are created dynamically at run-time. The example is located
in ddk_1_20\packages\ti\bios\drivers\examples\audio.

The following DSP/BIOS objects are statically configured in this
application example:

❏ The dio_codec class driver object, which uses the IOM mini-driver.

❏ A task, tskEcho, to run the echo function.

❏ A user-defined device (UDEV) object, named codec, to register the
mini-driver.

The following DSP/BIOS objects are dynamically created in this
application example:

❏ Two SIO streams, inStream and outStream, to exchange data
between echo and the DIO Adapter.
3-4

Configuring the DIO Class Driver (for SIO)
3.2.2 Configuration Steps

To configure the DIO adapter in the DSP/BIOS Configuration Tool, follow
these steps:

1) Create a UDEV object for the mini-driver as described in Section 3.1,
Registering the Mini-Driver, page 3-2 and in the mini-driver
documentation for your particular mini-driver (see the docs folder).

2) Set the following property for the DIO - Class Driver manager:

� Create all DIO Objects Statically. False (uncheck the box)
unless you plan to use statically created SIO streams only

3) Right-click on DIO - Class Driver and select Insert DIO from the pop-
up menu.

4) Rename the object as desired.
Using DSP/BIOS Device Drivers 3-5

Configuring the DIO Class Driver (for SIO)
5) Right-click on the object you created and choose Properties. Set the
following properties:

� use callback version of DIO functions. False (uncheck the
box) unless you plan to use SIO streams with SWI threads.

� device name. Name of UDEV object created in Step 1.

� channel parameters. 0x00000000 (or a pointer to a structure to
be passed to mdCreateChan).

6) Create the TSK objects that will run your task threads. (It is also
possible to use SWI threads with SIO stream objects. However, this
use is not as common.)

7) Use the SIO module API functions as described in the DSP/BIOS API
Reference Guide for creating and using SIO streams in your
application example.

8) Link your application with the appropriate mini-driver library (located
in the debug or release folder for your mini-driver).
3-6

Configuring the PIO Class Driver (for PIP)
3.3 Configuring the PIO Class Driver (for PIP)

If your application uses the PIP (pipe) module APIs for I/O, you should
use the PIO adapter to interface with a mini-driver. The combination of
the PIP module and the PIO adapter creates a class driver. The PIP
functions communicate with the PIO adapter, which in turn
communicates with the mini-driver.

Note:

Creating a PIO object in the DSP/BIOS configuration is not supported
at this time. Currently, creating a DIO object with the appropriate
parameters is equivalent to creating a PIO object.

The PIP module does not support the dynamic creation of object
instances. As with other DSP/BIOS modules, if an application uses the
PIP module, the initialization function for the PIP module is automatically
called by DSP/BIOS during application startup.

3.3.1 Example Application

The pip_audio example demonstrates how an application can use a
codec mini-driver via the PIP module in SWI threads. This application
uses the PIO adapter.

This example is provided for a number of codec drivers. When you
examine the configuration, notice the PIP, SWI, and UDEV objects. The
example is in ddk_1_20\packages\ti\bios\drivers\examples\audio.

In this application example, an IOM mini-driver has been registered and
both the PIP and SWI objects are statically created for use with the PIO
adapter. The PIO objects are created dynamically.

The following DSP/BIOS objects are statically configured in this
application example:

❏ A software interrupt, swiEcho, to run the echo function.

❏ Two data pipes pipRx and pipTx, to exchange data between echo
and the PLIO Adapter.

❏ A user-defined device (UDEV) object, named codec, to register the
mini-driver.
Using DSP/BIOS Device Drivers 3-7

Configuring the PIO Class Driver (for PIP)
3.3.2 Configuration Steps

To configure the PIO adapter in the DSP/BIOS Configuration Tool, follow
these steps:

1) Create a UDEV object for the mini-driver as described in Section 3.1,
Registering the Mini-Driver, page 3-2 and in the mini-driver
documentation for your particular mini-driver (see the docs folder).

2) Create a SWI object using the SWI�Software Interrupt Manager and
rename the SWI object. In the pip_audio example, it has been
renamed swiEcho.

3) Create two PIP objects using the PIP�Buffered Pipe Manager.
Rename the PIP objects. In the pip_audio example, the first pipe has
been renamed pipRx, and the second pipe has been renamed pipTx.

4) Right-click on the first PIP (for example, pipRx) and select Properties.
Set the following properties. Then click OK to save your changes.
3-8

Configuring the PIO Class Driver (for PIP)
5) Right-click on the second PIP (for example, pipTx) and select
Properties. Set the following properties for pipTx:

6) Use the PIO module API functions as described in Appendix B to
dynamically create two PIO channel objects�pioRx and pioTx�in
your application. For example:

void main()
{
 /* Initialize PIO module */
 PIO_init();

 /* Bind PIPs to channels using PIO class drivers */
 PIO_new(&pioRx, &pipRx, "/codec", IOM_INPUT, NULL);
 PIO_new(&pioTx, &pipTx, "/codec", IOM_OUTPUT, NULL);
 ...
}
7) Link your application with the appropriate mini-driver library (located

in the debug or release folder for your mini-driver).
Using DSP/BIOS Device Drivers 3-9

Configuring Applications to Use the GIO Class Driver
3.4 Configuring Applications to Use the GIO Class Driver

Another option for your application is to use the GIO class driver to
interface with a mini-driver.

As with most other DSP/BIOS modules, the GIO module can be
configured in the DSP/BIOS Configuration Tool or a DSP/BIOS Tconf
script. Figure 3-1 shows the configuration properties for the GIO module:

Figure 3-1. GIO Module Configuration

GIO has global properties that control how GIO blocks on I/O. By default,
GIO uses the semaphore objects managed by the SEM module.

The GIO module does not support the creating of object instances. As
with other DSP/BIOS modules, if an application uses the GIO module, the
initialization function for the GIO module is automatically called by
DSP/BIOS during application startup.
3-10

Configuring Applications to Use the GIO Class Driver
3.4.1 Example Application

The uarttest example demonstrates how an application can use the GIO
class driver with TSK threads.

The following DSP/BIOS objects are statically configured in this
application example:

❏ The GIO module object is enabled using the GIO General
Input/Output Module properties.

❏ A task, tskEcho, to run the echo function.

❏ A user-defined device (UDEV) object, named uart, to register the
mini-driver.

The following DSP/BIOS objects are dynamically created in this
application example:

❏ A GIO channel for both input and output to exchange data between
echo and the IOM Device Driver.

3.4.2 Configuration Steps

To use the GIO class driver in a DSP/BIOS application, follow these
steps:

1) Create a UDEV object for the mini-driver as described in Section 3.1,
Registering the Mini-Driver, page 3-2 and in the mini-driver
documentation for your particular mini-driver (see the mini-driver�s
doc folder).

2) Use the GIO module API functions as described in Chapter 3 and in
the DSP/BIOS API Reference manual to dynamically create GIO
channel objects in your application. For example:

GIO_Handle input;

Void main() {
 input = GIO_create("/uart", IOM_INPUT, &status,
 NULL, NULL);
...
}
3) Link your application with the appropriate mini-driver library (located

in the debug or release folder for your mini-driver).
Using DSP/BIOS Device Drivers 3-11

3-12

Chapter 4

GIO Class Driver

This chapter describes the GIO module, which provides a class driver.

4.1 About the GIO Module. 4�2
4.2 Implementation Details for GIO . 4�3
4.3 Error Handling . 4�5
4.4 Extending the GIO API . 4�5

Topic Page
4-1

About the GIO Module
4.1 About the GIO Module

The GIO module implements the GIO class driver, which is used to
present a blocking (synchronous) Read/Write API to applications. By
encapsulating this code, applications that use multiple IOM mini-drivers
can reduce their overall code size.

The GIO module has the following features:

❏ Provides blocking (synchronous) read/write APIs.

❏ Uses the IOM interface to communicate with device-specific mini-
driver implementations.

❏ Supports multiple device drivers.

❏ Supports bi-directional channels.

❏ Allows user configuration of blocking functions.

❏ Supports addition of APIs for new domains (such as video).

This last feature is important. The GIO_submit function supports a
standard route for adding APIs customized for domains such as video.

The ASYNC module is an example of such customization. This module
is provided with the DDK in order to support applications that use threads
that cannot block. This module does not add to the code size of the
application; it is implemented using macros that call existing GIO module
APIs in specialized ways. For more details on the ASYNC module, see
Appendix D, The ASYNC Extension to the GIO API, page D-1.

Examples of this type of customization include blocking read/write APIs
for use with file systems, UARTs, and frame video DSP applications:

❏ File system stacks use "traditional" read/write APIs for application
access to file data. They also need the ability to support bi-directional
channels. This is a capability that may be supported through the GIO
class driver and IOM mini-drivers.

❏ UART drivers also lend themselves to the read/write APIs. UARTs
are typically character based or have variable line lengths, instead of
fixed sized buffers.

❏ Extensions to the GIO interface can be made more �friendly� and
efficient for use with video capture and video display drivers. For
example, such extensions would typically address the need for video
device memory allocations, such as special frame buffers. In
addition, they might allow a single application call to "exchange"
video buffers, providing synchronization of the most-recent video
data between the video driver and application.
4-2

Implementation Details for GIO
4.2 Implementation Details for GIO

The GIO class driver implementation was designed to minimize code and
data size, while still providing the necessary common functionality for the
synchronous read/write APIs and extensions. The GIO API may be used
directly by applications to interface to IOM mini-drivers. These GIO APIs
act as a class driver. The GIO module is described in the DSP/BIOS API
Reference (literature number SPRU404 for C5000 and SPRU403 for
C6000).

Figure 4-1 shows the relationship of the GIO class driver to other system
components.

Figure 4-1. GIO Class Driver Interface

When creating device driver channels, the GIO class driver allocates
additional state and I/O request state structures, IOM_Packets, and a
GIO data object.

GIO API
GIO_abort
GIO_control
GIO_create
GIO_delete
GIO_flush
GIO_read
GIO_submit
GIO_write

IOM Mini-Driver Interface
mdBindDev
mdUnBindDev
mdControlChan
mdCreateChan
mdDeleteChan
mdSubmitChan

Application
Threads

Application
Threads

GIO Class Driver

IOM M ini-Driver(s)
GIO Class Driver 4-3

Implementation Details for GIO
4.2.1 GIO_Obj Structure

The GIO_create function creates a GIO object for a particular IOM
channel instance. A GIO_Obj has the following structure:

typedef struct GIO_Obj {
 IOM_Fxns *fxns; /* pointer to function table */
 Uns mode; /* create mode */
 Uns timeout; /* timeout for blocking */
 IOM_Packet syncPacket; /* for synchronous use */
 QUE_Obj freeList; /* frames for asynch I/O */
 Ptr syncObj; /* ptr to synchronization obj */
 Ptr mdChan; /* ptr to channel obj */
} GIO_Obj, *GIO_Handle;
In particular, the GIO object provides storage for the following important
information:

❏ The IOM mini-driver function table (fxns) the application
communicates with through this GIO object.

❏ The mode to use when creating a channel. The options are
IOM_INPUT, IOM_OUTPUT or IOM_INOUT.

❏ Any IOM_Packets (freeList) used between the class driver and mini-
driver for asynchronous operation. These are allocated and freed by
GIO.

❏ The synchronization object used for a particular channel (syncObj).
For example, a semaphore when using the GIO blocking APIs.

❏ A pointer to the specific IOM mini-driver channel object (mdChan).
4-4

Error Handling
4.3 Error Handling

In general, the GIO class driver code ignores mini-driver error codes
returned to the application. Some error codes are returned to the
application by GIO. For example, if dynamic allocations fail
IOM_EALLOC is returned, or if the IOM_Packet allocation fails the more
specific IOM_ENOPACKETS error code is returned.

GIO performs additional processing to aid mini-driver writers in case of a
GIO channel timeout. If a GIO channel timeouts while blocking, a
calldown to the mini-driver via the mdControlChan function is made with
a command code of IOM_CHAN_TIMEDOUT. This calldown is
performed before the application thread returns. This gives the mini-
driver the opportunity to perform any necessary timeout cleanup, such as
returning the IOM_Packet to the class driver if necessary.

4.4 Extending the GIO API

As mentioned in Section 4.1, About the GIO Module, one important
feature of GIO is its ability to support the addition of APIs for new
application domains.

This section presents an example of a video API extension to the GIO
class driver. This example addresses the real-world need for a video API
that is more efficient than using the existing SIO or PIP APIs. This video
API specifically addresses the needs of frame-by-frame video capture
and display device drivers. An entire frame video module (FVID) can be
created through simple macro definitions using the GIO APIs. As a result,
no new code is added to the application.

In this example, frame-by-frame video capture and display involves the
following additional requirements:

❏ The API should not be difficult to understand and use in video
applications.

By minimizing or eliminating the need for device-specific control calls
in applications, the reusability and understandability of the code is
enhanced.

❏ Address video frame buffer synchronization between the application
and device driver.

For example, a video display driver must always be displaying video
data. It does not return the frame buffer to the application until the
application gives it another to display. The most efficient way to
perform this type of synchronization is to define a single API call that
performs the frame buffer exchange.
GIO Class Driver 4-5

Extending the GIO API
Likewise, a video capture driver should always return the latest
"captured" video data. This requires the driver to retain at least one
frame buffer until a buffer exchange can occur.

❏ Address frame buffer memory management.

Frame buffer memory can be allocated from system memory or from
device memory depending on the video device hardware. Some
video devices have on-board video RAM that applications can use for
video frame buffers. Applications should not have to change the
usage of an API depending on where the frame buffer memory is
allocated.

To address additional frame video APIs to support the above
requirements, we introduce the following new FVID module APIs:

Example 4.1. Example Video Macro Definitions using GIO:

/* base video command code */
#define FVID_BASE IOM_USER /* base command value */
/* video command codes */
#define FVID_ALLOC (FVID_BASE + 0) /* alloc buffer */
#define FVID_FREE (FVID_BASE + 1) /* free buffer */
#define FVID_EXCHANGE (FVID_BASE + 2) /* exchange */

/* frame-base video(FVID) API */

/* Get a video frame buffer from the mini-driver */
#define FVID_alloc(gioChan, bufp, psize) \
GIO_submit(gioChan, FVID_ALLOC, bufp, psize, NULL)

/* Return the frame buffer back to mini-driver */
#define FVID_free(gioChan, bufp, psize) \
GIO_submit(gioChan, FVID_FREE, bufp, psize, NULL)

/* Swap frame buffer between app and mini-driver */
#define FVID_exchange(gioChan, bufp, psize) \
GIO_submit(gioChan, FVID_EXCHANGE, bufp, psize, NULL)
Each of these video APIs is actually a macro that uses the GIO_submit
function with the command (cmd) parameter set to a special video
command. The class driver does not interpret the command code; it
simply passes the command to the mini-driver in the IOM_Packet. The
mini-driver is responsible for appropriate processing. This simple
mechanism of defining domain-specific command values for the
GIO_submit API provides the flexibility to define additional APIs that can
be used with particular mini-drivers.
4-6

Chapter 5

Developing a Mini-Driver Step-by-Step

This chapter shows a step-by-step process for developing a mini-driver.

5.1 Mini-Driver Design and Implementation . 5�2
5.2 Examining the �C5402 SBS Mini-Driver Example 5�6

Topic Page
5-1

Mini-Driver Design and Implementation
5.1 Mini-Driver Design and Implementation

Appendix A, IOM Interface, provides a reference for the functions that are
implemented in order to create a mini-driver. Figure 2-2 provides an
overview of the mini-driver call flow.

This section describes functionality usually required when developing a
mini-driver and provides some advice for implementation. The following
topics are discussed:

❏ Binding Channels�mdBindDev

❏ Creating and Deleting Channels�mdCreateChan/mdDeleteChan

❏ Submitting I/O Requests�mdSubmitChan

❏ Servicing Interrupts and Completing I/O�ISRs

❏ Controlling a Device�mdControlChan

5.1.1 Binding Channels�mdBindDev

The binding function (mdBindDev) for each configured IOM mini-driver is
called by DSP/BIOS during device initialization. This function should
typically perform the following actions:

❏ Set device defaults and perform setup based on the configured
device parameters and optional global device data.

❏ Plug device ISRs.

❏ Acquire driver resources such as memory, McBSPs, and DMAs.

5.1.1.1 Single or Multiple Device Instances

If the mini-driver is designed to allow multiple device instances, then
DSP/BIOS calls the mdBindDev function for each configured device. The
device's devid parameter is typically used to distinguish between multiple
instances of a particular device type.

If the mini-driver does not support multiple device instances, the
mdBindDev function should check to see if it is called more than once by
DSP/BIOS. It should return an error if a user attempts to configure more
than one instance of this mini-driver. For example:

static Bool curinit = FALSE;
if (curinit) {
 return (IOM_EBADIO); /* mdBindDev already called */
}
curinit = TRUE;
5-2

Mini-Driver Design and Implementation
5.1.1.2 Global Device Data

It is often desirable for mini-drivers to use static data to eliminate the need
for dynamic data allocations at run-time. A mini-driver can use the in/out
data pointer (devp) as passed instead of returning a global data pointer
to the driver data it allocates dynamically. The devp parameter is also
used to allow global data to be accessed by each channel instance of a
device instance. This devp pointer is passed to the mdCreateChan
function as the first parameter.

5.1.2 Creating and Deleting Channels�mdCreateChan/mdDeleteChan

From a application�s perspective, a logical communication channel is
created between the application and the device instance where driver
data may be exchanged. The application creates one or more of these
logical channels, which is represented by the mini-driver as a channel
object.

The mdCreateChan function should allocate a channel object and set
fields in the channel object to their initial values as needed. The
mdDeleteChan function should deallocate the specified channel object.

The structure of the channel object is defined differently by each mini-
driver. The following example shows a sample channel object structure:

typedef struct ChanObj {
 Bool inuse; /* TRUE => channel is open */
 Int mode; /* IOM_INPUT or IOM_OUTPUT only */
 IOM_Packet *dataPacket; /* active I/O packet */
 QUE_Obj pendList; /* list of packets for I/O */
 Uns *bufptr; /* pointer in current buffer */
 Uns bufcnt; /* samples left to handle */
 IOM_TiomCallback cbFxn; /* to notify client */
 Ptr cbArg;
} ChanObj, *ChanHandle;
While the structure may vary, some fields are necessary in nearly all mini-
drivers. These important fields are:

❏ mode. Must have a value of IOM_INPUT, IOM_OUTPUT, or
IOM_INOUT. The mdCreateChan function should return an error of
IOM_EBADMODE for any unsupported modes.

❏ pendList. A mini-driver must be able to handle or hold multiple I/O
requests due to multiple mdSubmitChan calls by the class driver. By
queuing these I/O requests in the mini-driver, a more efficient
implementation can be realized when processing multi-queued
requests. Essentially, the mini-driver can initiate the next queued
request without having to initiate the completion callback first
Developing a Mini-Driver Step-by-Step 5-3

Mini-Driver Design and Implementation
(because requests are queued within the mini-driver). Also, this
eliminates the case of the class driver calling the mdSubmitChan
mini-driver function in the second calling context of an ISR, that is,
the callback context.

❏ cbFxn. The callback function pointer stores which function is called
as a result of a completed I/O request. This is typically the callback
function implemented as part of the class driver.

❏ cbArg. The callback argument is a pointer that is an input parameter
to the callback function. This allows the class driver to associate the
I/O request submitted to the specific callback.

5.1.3 Submitting I/O Requests�mdSubmitChan

The mdSubmitChan mini-driver function must handle command code
passed to it as part of the IOM_Packet structure. Depending on the
command code, it either handles the code or returns the
IOM_ENOTIMPL (not implemented) error code.

The currently supported mini-driver command codes are: IOM_READ,
IOM_WRITE, IOM_ABORT, and IOM_FLUSH.

❏ IOM_READ. Drivers that support input channels must implement
IOM_READ.

❏ IOM_WRITE. Drivers that support output channels must implement
IOM_WRITE.

❏ IOM_ABORT and IOM_FLUSH. To abort or flush I/O requests
already submitted, all I/O requests pending in the mini-driver must be
completed and returned to the class driver. The mdSubmitChan
function should dequeue each of the I/O requests from the mini-
driver's channel queue. It should then set the size and status fields in
the IOM_Packet. Finally, it should call the cbFxn for the channel.

� When aborting, all input and output requests are discarded.

� When flushing, all output requests and processed normally and
all input requests are discarded.This requires the processing of
each IOM_Packet in the original order they were queued up to
the channel.

5.1.4 Servicing Interrupts and Completing I/O�ISRs

The role of mini-drivers is to process actual device events, such as a
periodic interrupt. For devices such as audio codecs, these events are
typically interrupts that signal the completion of a data sample input to or
output from the device. Whether DMA or a sample-by-sample device
5-4

Mini-Driver Design and Implementation
interrupt is used to synchronize the data transfer, the driver must handle
and synchronize these events.

Many devices have separate Tx and Rx interrupts that the mini-driver
must handle. In general, the IOM mini-driver must perform the following
activities in these ISR(s):

❏ Dequeue the IOM_Packet request.

❏ Set up the next transfer or service request.

❏ Call the class driver callback to synchronize with the calling
application, and return the IOM_Packet.

5.1.5 Controlling a Device�mdControlChan

The control operations supported by a mini-driver are device-specific.
However, IOM does define some standard control codes that may
optionally be implemented by driver writers. Control codes not handled
by the mdControlChan function must return a status of IOM_ENOTIMPL.

Driver writers should implement additional command codes using values
greater than IOM_CNTL_USER (128). The IOM control codes currently
defined by IOM are:

❏ IOM_CHAN_RESET. Channel-specific. Perform processing to place
the device channel in its initial state. After calling mdControlChan
with this command code, normal I/O operations should succeed.

❏ IOM_CHAN_TIMEDOUT. Channel-specific. When a timeout occurs
in a class driver or application, this control code can handle timeout
processing. For example, after a timeout the IOM_Packet may not
have been returned to the class driver if the callback was not called.

❏ IOM_DEVICE_RESET. Global. Perform a global device reset. This
affects all channels of this device.

A mini-driver�s supported control codes and operations performed should
be documented for application developers who integrate that mini-driver.
When describing the processing for a control code, be careful to specify
the scope of that processing as channel-specific or global. For example,
if the baud rate is changed, it may influence the baud rate of all channels
or a single channel. The mini-driver documentation should also specify
the context or constraints on when each control code may be called.
Developing a Mini-Driver Step-by-Step 5-5

Examining the �C5402 SBS Mini-Driver Example
5.2 Examining the �C5402 SBS Mini-Driver Example

To learn how to write a mini-driver, it is useful to examine the code for a
simple mini-driver.

This section shows portions of the code for a McBSP sample-by-sample
device driver for the �C5402 DSK. This relatively simple mini-driver is not
included in the DDK distribution. This code is for illustrative purposes
only. More realistic example of audio drivers can be found in the DDK.

The sections that follow describe the actions performed by this mini-
driver. These can serve as an example for the actions other mini-drivers
should perform. The source code files for this mini-driver would be
c54xx_dma_mcbsp.c and c54xx_dma_mcbsp.h.

The sample-by-sample driver described in this section copies samples
between a McBSP and a buffer. When receiving a buffer, it calls the
callback function if the buffer is full. When transmitting a buffer, it calls the
callback function if the buffer is empty.

5.2.1 Constants, Types, and Structures

The header file for this driver sets up the following structures and
declarations:

❏ IOM_Fxns. Each IOM mini-driver must provide an IOM_Fxns table to
be referenced by the �function table ptr� property of the UDEV object
for this mini-driver. The mini-driver declares the following table, and
the header file makes an extern declaration for the table name. Each
of the functions referenced in this table must be created as part of the
mini-driver.

 /* Public IOM interface table */
 IOM_Fxns DSK5402_MCBSP_AD50_FXNS = {
 mdBindDev,
 IOM_UNBINDDEVNOTIMPL,
 mdControlChan,
 mdCreateChan,
 mdDeleteChan,
 mdSubmitChan
 };
❏ Initialization function. The initialization function for the mini-driver

is not included in the IOM_Fxns table. Instead, a separate extern is
created for use by DSP/BIOS. In the configuration, this function must
be referenced by the �init function� property of the UDEV object for
this mini-driver.

 extern Void DSK5402_MCBSP_AD50_init(Void);
5-6

Examining the �C5402 SBS Mini-Driver Example
❏ devParams. If the devParams parameter passed to the mdBindDev
function is null, then the mini-driver may elect to use default device
parameter values.

❏ ChanObj. Each mini-driver must declare and create one or more
channel objects. In this example, the ChanObj has the following
structure. It also declares constants for the mode field and for the
number of channels to create. See Section 5.1.2, Creating and
Deleting Channels�mdCreateChan/mdDeleteChan for more on
channel objects.

 typedef struct ChanObj {
 Bool inuse; /* TRUE => channel is open */
 Int mode; /* IOM_INPUT or IOM_OUTPUT only */
 IOM_Packet *dataPacket; /* active I/O packet */
 QUE_Obj pendList; /* list of packets for I/O */
 Uns *bufptr; /* pointer in current buffer */
 Uns bufcnt; /* samples left to handle */
 IOM_TiomCallback cbFxn; /* to notify client */
 Ptr cbArg;
 } ChanObj, *ChanHandle;

In this example, the channel objects are initially declared as follows:

 #define NUMCHANS 2 /* INPUT and OUTPUT */

 static ChanObj chans[NUMCHANS] = {
 {FALSE, INPUT, NULL, {NULL, NULL}, NULL, 0,
 NULL, NULL},
 {FALSE, OUTPUT, NULL, {NULL, NULL}, NULL, 0,
 NULL, NULL}
 };

5.2.2 Initialization Function

In the case of this sample-by-sample driver, the initialization function
performs no actions. In other mini-drivers, the initialization function may
need to set registers or initialize data used globally by this mini-driver.
Developing a Mini-Driver Step-by-Step 5-7

Examining the �C5402 SBS Mini-Driver Example
5.2.3 mdBindDev Function

The mdBindDev function is called by DSP/BIOS during device
initialization. For the sample-by-sample driver, it is called after the
DSK5402_MCBSP_AD50_init function.

The following example shows the mdBindDev function for the McBSP
sample-by-sample device driver for the �C5402 DSK. The numbers in the
left column next to the following example correspond to the step numbers
in the list that follows the example.

static Int mdBindDev(Ptr *devp, Int devid,
 Ptr devParams)
{
 DSK5402_MCBSP_AD50_DevParams *params =
 (DSK5402_MCBSP_AD50_DevParams *)devParams;
 static Bool curinit = FALSE;

 /* CSL handle to the McBSP. The McBSP is shared
 between the two channels */
 static MCBSP_Config mcbspCfg0 = {
 0x0021, /* Serial Port Control Register 1 */
 0x0201, /* Serial Port Control Register 2 */
 0x0040, /* Receive Control Register 1 */
 0x0000, /* Receive Control Register 2 */
 0x0040, /* Transmit Control Register 1 */
 0x0000, /* Transmit Control Register 2 */
 0x0000, /* Sample Rate Generator Register 1 */
 0x0000, /* Sample Rate Generator Register 2 */
 0x0000, /* Multichannel Control Register 1 */
 0x0000, /* Multichannel Control Register 2 */
 0x000c, /* Pin Control Register */
 0x0000, /* Rx Chan Enable Reg Partition A */
 0x0000, /* Rx Chan Enable Reg Partition B */
 0x0000, /* Tx Chan Enable Reg Partition A */
 0x0000 /* Tx Chan Enable Reg Partition B */
 };

 /* for CPLD CTRL 2 */
 static volatile ioport unsigned port04;

 if (curinit) {
 return (IOM_EBADIO);
 }
 curinit = TRUE;

 /* use default parameters if none are given */
 if (params == NULL) {
 params = &DSK5402_MCBSP_AD50_DEVPARAMS;
 }

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
5-8

Examining the �C5402 SBS Mini-Driver Example
 /* open the McBSP */
 hMcbsp = MCBSP_open(MCBSP_PORT1, MCBSP_OPEN_RESET);
 MCBSP_config(hMcbsp, &mcbspCfg0);

 /*
 * DSK5402 board setup ...
 * Select McBSP1 mapped to Audio Codec (CPLD Reg)
 * and FC bit = 0 (secondary control off)
 */
 port04 &= 0xf5;

 /* start the McBSP */
 MCBSP_start(hMcbsp, MCBSP_XMIT_START |
 MCBSP_RCV_START, 0x0);

 /* set codec params (also initializes codec) */
 AD50_setParams(hMcbsp, &(params->ad50));

 /* bind Rx/Tx interrupts and
 use DSP/BIOS HWI dispatcher */
 HWI_dispatchPlug(IRQ_EVT_RINT1, (Fxn)rxIsr, NULL);
 HWI_dispatchPlug(IRQ_EVT_XINT1, (Fxn)txIsr, NULL);

 *devp = chans;

 return (IOM_COMPLETED);
}
In this example, the mdBindDev function performs the following actions:

1) Casts the devParams passed to the function to the
DSK5402_MCBSP_AD50_DevParams type.

2) Configures the CSL handle to the McBSP by setting various
registers. The McBSP is shared by the input and output channels.

3) Configures the port for CPLD CTRL 2.

4) Returns a status value of IOM_EBADIO if mdBindDev has already
been called.

5) Sets the parameters to their default values if the devParams passed
to this function was null.

6) Opens and configures the McBSP using calls to MCBSP_open and
MCBSP_config.

7) Sets up the DSK5402 board by mapping McBSP1 to the audio codec
(CPLD Register) and by setting the FC bit to 0 (secondary control
off).

8) Starts the McBSP by calling MCBSP_start.

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:
Developing a Mini-Driver Step-by-Step 5-9

Examining the �C5402 SBS Mini-Driver Example
9) Sets codec parameters to initialize the codec by calling
AD50_setParams.

10) Binds the Rx and Tx interrupts to use the DSP/BIOS HWI dispatcher
by calling HWI_dispatchPlug.

11) Sets the devp parameter to point to the globally declared chans array.

12) Returns the IOM_COMPLETED status.

The mdUnBindDev function is not implemented for this sample-by-
sample driver.

5.2.4 mdControlChan Function

The mdControlChan function is called in response to calls to SIO_ctrl,
PIO_ctrl, and GIO_control. In addition, if a class driver reaches a timeout,
a calldown is made to mdControlChan with the cmd set to
IOM_CHAN_TIMEDOUT.

The following example shows the mdControlChan function for the
McBSP sample-by-sample device driver for the �C5402 DSK. The
numbers in the left column next to the following example correspond to
the step numbers in the list that follows the example.

static Int mdControlChan(Ptr chanp, Uns cmd, Ptr args)
{
 /* If a channel timeouts (in GIO class driver),
 * a calldown is made to mdControlChan with
 * cmd = IOM_CHAN_TIMEDOUT. Timeout processing
 * is optionally implemented here.
 * If cmd not performed return IOM_ENOTIMPL.
 */
 if (cmd == IOM_CHAN_TIMEDOUT) {
 /* Timed out. Perform channel cleanup. */
 abortio(chanp);
 }
 else {
 /* return IOM_ENOTIMPL for codes not handled */
 return (IOM_ENOTIMPL);
 }

 return (IOM_COMPLETED);
}
1) For this sample-by-sample driver, only the IOM_CHAN_TIMEDOUT

command is handled.

2) When a timeout occurs, this function runs the abortio function, which
discards uncompleted I/O packet requests.

Step 1:

Step 2:

Step 3:

Step 4:
5-10

Examining the �C5402 SBS Mini-Driver Example
3) All other commands cause this function to return a status of
IOM_ENOTIMPL.

4) After successfully processing a command, the mdControlChan
function returns IOM_COMPLETED.

5.2.5 mdCreateChan Function

The mdCreateChan function is called in response to calls to SIO_create,
PIO_new, GIO_create, and similar class driver actions. In this example,
the mdCreateChan function performs the following actions:

The following example shows the mdCreateChan function for the McBSP
sample-by-sample device driver for the �C5402 DSK. The numbers in the
left column next to the following example correspond to the step numbers
in the list that follows the example.

static Int mdCreateChan(Ptr *chanp, Ptr devp,
 String name, Int mode,
 Ptr chanParams,
 IOM_TiomCallback cbFxn,
 Ptr cbArg)
{
 ChanHandle chans = (ChanHandle)devp;
 ChanHandle chan;

 if (mode == IOM_INPUT) {
 chan = &chans[INPUT]; /* input only channel */
 }
 else if (mode == IOM_OUTPUT) {
 chan = &chans[OUTPUT]; /* output only channel */
 }
 else {
 /* bi-directional channels not supported */
 return (IOM_EBADMODE);
 }

 /* Check if channel is already in use.
 * Use ATM_setu() for atomic test-and-set.
 */
 if (ATM_setu((Uns *)&chan->inuse, TRUE)) {
 /* ERROR! channel is already open! */
 return (IOM_EBADIO);
 }

Step 1:

Step 2:

Step 3:
Developing a Mini-Driver Step-by-Step 5-11

Examining the �C5402 SBS Mini-Driver Example
 QUE_new(&chan->pendList);
 chan->dataPacket = NULL;
 /* no need to initialize chan->bufptr */
 chan->cbFxn = cbFxn;
 chan->cbArg = cbArg;

 if (chan->mode == INPUT) {
 IRQ_enable(IRQ_EVT_RINT1); /* Rx Intr enable */
 }
 else {
 IRQ_enable(IRQ_EVT_XINT1); /* Tx intr enable */
 }

 chanp = chan; / return channel handle */

 return (IOM_COMPLETED); /* success */
}
1) Creates a handle to the declared chans array and a handle to the

specific channel being created within that array.

2) Uses the mode parameter to determine which channel the handle
should point to. If the mode is unsupported, it returns a status of
IOM_EBADMODE.

3) Checks to see if the channel is already in use. This is indicated by the
inuse field in the channel object, which it check atomically. If the
channel is already in use, it returns a status of IOM_EBADIO.

4) Initializes the pendList QUE object. This object is created as part of
the channel object structure.

5) Sets the dataPacket field of the channel object to null.

6) Sets the cbFxn and cbArg fields of the channel object to the values
passed to the mdCreateChan function.

7) If this is an input channel, it enables IRQ_EVT_RINT1. If this is an
output channel, it enables IRQ_EVT_XINT1.

8) Sets the chanp parameter to the channel handle created by this
function.

9) Returns a status of IOM_COMPLETED.

Step 4:
Step 5:

Step 6:

Step 7:

Step 8:

Step 9:
5-12

Examining the �C5402 SBS Mini-Driver Example
5.2.6 mdDeleteChan Function

The mdDeleteChan function is called in response to calls to SIO_delete,
GIO_delete, and similar class driver actions.

The following example shows the mdDeleteChan function for the McBSP
sample-by-sample device driver for the �C5402 DSK. The numbers in the
left column next to the following example correspond to the step numbers
in the list that follows the example.

static Int mdDeleteChan(Ptr chanp)
{
 ChanHandle chan = (ChanHandle)chanp;

 chan->inuse = FALSE;

 if (chan->mode == INPUT) {
 IRQ_disable(IRQ_EVT_RINT1);
 }
 else {
 IRQ_disable(IRQ_EVT_XINT1);
 }

 return (IOM_COMPLETED);
}
1) Sets the inuse field in the channel object to FALSE.

2) If this was an input channel, it disables IRQ_EVT_RINT1. If this is an
output channel, it disables IRQ_EVT_XINT1.

3) Returns a status of IOM_COMPLETED.

5.2.7 mdSubmitChan Function

The mdSubmitChan function is called in response to calls to GIO_submit
or similar class driver actions.

The following example shows the mdSubmitChan function for the McBSP
sample-by-sample device driver for the �C5402 DSK. The numbers in the
left column next to the following example correspond to the step numbers
in the list that follows the example.

Step 1:

Step 2:

Step 3:
Developing a Mini-Driver Step-by-Step 5-13

Examining the �C5402 SBS Mini-Driver Example
static Int mdSubmitChan(Ptr chanp, IOM_Packet *packet)
{
 ChanHandle chan = (ChanHandle)chanp;

 /* Check if command is to abort or flush */
 /* Note: For this audio codec we toss output
 data even when flushing */
 if (packet->cmd == IOM_FLUSH ||
 packet->cmd == IOM_ABORT) {
 abortio(chan);

 /* flush/abort pkt completed */
 packet->status = IOM_COMPLETED;
 return (IOM_COMPLETED);
 }

 if (chan->dataPacket == NULL) {
 chan->bufptr = (Uns *)packet->addr;
 chan->bufcnt = packet->size;

 /* dataPacket must be set last to synch w/ ISR */
 chan->dataPacket = packet;
 }
 else {
 QUE_put(&chan->pendList, packet);
 }

 return (IOM_PENDING);
}
1) Checks to see if the command in the IOM_Packet is to abort or flush

the channel. In either case, it calls the abortio function, which
discards uncompleted I/O packet requests by getting all packets from
the pendList queue and setting the status field of each IOM_Packet
to IOM_ABORTED.

Note that for this particular audio mini-driver, both the abort and flush
commands are handled by discarding output data. Typically, flush
command handling differs from the abort command in that output
packets are handled normally.

If it aborted or flushed the channel, it sets the status field of the
current IOM_Packet to IOM_COMPLETED and returns a status of
IOM_COMPLETED.

2) Continues if the command in the IOM_Packet is to read or write (the
remaining commands). If the dataPacket field for the channel object
is null, the packet does not need to be queued. This function sets the
bufptr and bufcnt fields of the channel object using values in the

Step 1:

Step 2:

Step 3:

Step 4:
5-14

Examining the �C5402 SBS Mini-Driver Example
IOM_Packet. It then sets the dataPacket field to point to the
IOM_Packet itself.

3) If the dataPacket field is non-null, this function puts the packet on the
pendList queue.

4) Returns a status of IOM_PENDING.

Actual processing of packets is handled by the mini-driver ISR functions,
which are described in Section 5.2.9, ISR Functions, page 5-16.

5.2.8 mdUnBindDev Function

The mdUnBindDev function is not implemented for the McBSP sample-
by-sample device driver for the �C5402 DSK. Instead, the following
example shows the mdUnBindDev function for the generic McBSP driver
for the TMS320C6x1x series. The numbers in the left column next to the
example correspond to the step numbers in the list that follows the
example.

static Int mdUnBindDev(Ptr devp)
{
 PortHandle port = (PortHandle) devp;

 port->inUse = FALSE;

 /* Close the McBSP */
 MCBSP_close(port->hMcbsp);

 return (IOM_COMPLETED);
}
1) Sets the port�s inUse field to false.

2) Closes the McBSP by calling MCBSP_close.

3) Returns a status of IOM_COMPLETED.

Step 1:

Step 2:

Step 3:
Developing a Mini-Driver Step-by-Step 5-15

Examining the �C5402 SBS Mini-Driver Example
5.2.9 ISR Functions

The mini-driver�s ISR functions are called in response hardware
interrupts. In this example, the sample-by-sample driver has two ISRs:
rxIsr and txIsr. These functions are bound to interrupts in the mdBindDev
function.

5.2.9.1 rxIsr Function

The rxIsr function handles receive (input) interrupts.

The following example shows the rxIsr function for the McBSP sample-
by-sample device driver for the �C5402 DSK. The numbers in the left
column next to the following example correspond to the step numbers in
the list that follows the example.

static Void rxIsr(Void)
{
 ChanHandle chan = &chans[INPUT];

 if (chan->dataPacket == NULL) {
 MCBSP_read(hMcbsp); /* toss data */
 return;
 }

 *chan->bufptr = MCBSP_read(hMcbsp);

 updateChan(chan);
}
1) If the dataPacket field for the channel is null, it discards the input data

from the McBSP and returns.

2) Otherwise, it reads a new sample from the McBSP and copies it the
the location pointed to by the bufptr field in the channel object.

3) It then calls the updateChan function that follows.

Step 1:

Step 2:

Step 3:
5-16

Examining the �C5402 SBS Mini-Driver Example
static Void updateChan(ChanHandle chan)
{
 IOM_Packet *tmpPacket;

 chan->bufptr++;
 chan->bufcnt--;

 /* Is this buffer finished? */
 if (chan->bufcnt == 0) {
 chan->dataPacket->status = IOM_COMPLETED;

 tmpPacket = chan->dataPacket;

 chan->dataPacket = QUE_get(&chan->pendList);
 if (chan->dataPacket == (
 IOM_Packet *)&chan->pendList) {
 chan->dataPacket = NULL;
 }
 else {
 chan->bufptr = chan->dataPacket->addr;
 chan->bufcnt = chan->dataPacket->size;
 }

 (*chan->cbFxn)(chan->cbArg, tmpPacket);
 }
}
4) The updateChan function increments the bufptr field of the channel

object and decrements the bufcnt field of the channel object.

5) If the bufcnt field has reached zero, it continues processing the
following steps. Otherwise updateChan returns to the ISR, which has
finished its processing.

6) The updateChan function sets the status field in the current
IOM_Packet to IOM_COMPLETED.

7) The updateChan function attempts to get another IOM_Packet from
the pendList queue. If another IOM_Packet is available, it sets the
bufptr and bufcnt fields of the channel object to the addr and size
values in the IOM_Packet.

8) The updateChan function calls the callback function specified for the
channel. This callback function is passed to mdCreateChan by the
class driver used by the application.

Step 4:

Step 5:
Step 6:

Step 7:

Step 8:
Developing a Mini-Driver Step-by-Step 5-17

Examining the �C5402 SBS Mini-Driver Example
5.2.9.2 txIsr Function

The txIsr function handles transmit (output) interrupts.

The following example shows the rxIsr function for the McBSP sample-
by-sample device driver for the �C5402 DSK. The numbers in the left
column next to the following example correspond to the step numbers in
the list that follows the example.

static Void txIsr(Void)
{
 ChanHandlechan = &chans[OUTPUT];

 if (chan->dataPacket == NULL) {
 MCBSP_write(hMcbsp, 0);/* output dummy sample */
 return;
 }

 MCBSP_write(hMcbsp, *chan->bufptr & 0xfffe);

 updateChan(chan);
}
1) If the dataPacket field for the channel is null, it writes a dummy

sample to the McBSP and returns.

2) Otherwise, it writes the contents of the bufptr field of the channel
object to the McBSP.

3) It then calls the updateChan function, which performs the same
functions described previously for the rxIsr.

Step 1:

Step 2:

Step 3:
5-18

Appendix A

IOM Interface

This appendix provides reference details for the IOM (I/O Mini-driver)
interface.

A.1 Mini-Driver Interface Overview. A�2
mdBindDev. A�5
mdControlChan . A�6
mdCreateChan . A�7
mdDeleteChan . A�9
mdSubmitChan . A�10
mdUnBindDev . A�12

Topic Page
A-1

Mini-Driver Interface Overview
A.1 Mini-Driver Interface Overview

The mini-driver interface specifies how to implement a mini-driver.

Functions A mini-driver should implement the following functions:

❏ mdBindDev. Bind device to mini-driver.

❏ mdControlChan. Perform channel control command.

❏ mdCreateChan. Create a device channel.

❏ mdDeleteChan. Delete a channel.

❏ mdSubmitChan. Submit a packet to a channel for processing.

❏ mdUnBindDev. Unbind device from mini-driver.

Description A mini-driver contains the device-specific portions of the driver. Once you
create the specified functions for your mini-driver, application integrators
can easily use your mini-driver through the DIO adapter, PIO adapter,
and/or GIO class driver.

The sections that follow describe how to implement the mini-driver
functions in detail. Once implemented, these functions should be
referenced in an interface table of type IOM_Fxns, which applications will
reference to integrate the mini-driver. For example:

IOM_Fxns DSK5402_MCBSP_AD50_FXNS = {
 mdBindDev,
 IOM_UNBINDDEVNOTIMPL,
 mdControlChan,
 mdCreateChan,
 mdDeleteChan,
 mdSubmitChan
};

Note:

Any mini-driver functions you choose not to implement should either
plug the mini-driver function table with IOM_xxxNOTIMPL, where xxx
corresponds to the function name. Alternately, you may implement a
function that returns a status of IOM_ENOTIMPL.
A-2

Mini-Driver Interface Overview
Constants, Types,
and Structures

The following code can be found in iom.h, which is located in the
BIOS_INSTALL_DIR\packages\ti\bios\include folder.

 /* Modes for mdCreateChan */
 #define IOM_INPUT 0x0001
 #define IOM_OUTPUT 0x0002
 #define IOM_INOUT (IOM_INPUT | IOM_OUTPUT)

 /* IOM Status Codes */
 #define IOM_COMPLETED 0 /* I/O successful */
 #define IOM_PENDING 1 /* I/O queued and pending */
 #define IOM_FLUSHED 2 /* I/O request flushed */
 #define IOM_ABORTED 3 /* I/O aborted */

 /* IOM Error Codes */
 #define IOM_EBADIO -1 /* generic failure */
 #define IOM_ETIMEOUT -2 /* timeout occurred */
 #define IOM_ENOPACKETS -3 /* no packets available */
 #define IOM_EFREE -4 /* unable to free resources */
 #define IOM_EALLOC -5 /* unable to alloc resource */
 #define IOM_EABORT -6 /* I/O aborted uncompleted*/
 #define IOM_EBADMODE -7 /* illegal device mode */
 #define IOM_EOF -8 /* end-of-file encountered */
 #define IOM_ENOTIMPL -9 /* operation not supported */
 #define IOM_EBADARGS -10 /* illegal arguments used */
 #define IOM_ETIMEOUTUNREC -11 /* unrecoverable timeout */
 #define IOM_EINUSE -12 /* device already in use */

 /* Command codes for IOM_Packet */
 #define IOM_READ 0
 #define IOM_WRITE 1
 #define IOM_ABORT 2
 #define IOM_FLUSH 3
 #define IOM_USER 128 /* 0-127 reserved for system */

 /* Command codes for GIO_control and mdControlChan */
 #define IOM_CHAN_RESET 0 /* reset channel only */
 #define IOM_CHAN_TIMEDOUT 1 /* channel timeout occurred */
 #define IOM_DEVICE_RESET 2 /* reset entire device */

 typedef struct IOM_Fxns
 {
 IOM_TmdBindDev mdBindDev;
 IOM_TmdUnBindDev mdUnBindDev;
 IOM_TmdControlChan mdControlChan;
 IOM_TmdCreateChan mdCreateChan;
 IOM_TmdDeleteChan mdDeleteChan;
 IOM_TmdSubmitChan mdSubmitChan;
 } IOM_Fxns;
IOM Interface A-3

Mini-Driver Interface Overview
 #define IOM_BINDDEVNOTIMPL (IOM_TmdBindDev)IOM_mdNotImpl
 #define IOM_UNBINDDEVNOTIMPL (IOM_TmdUnBindDev)IOM_mdNotImpl
 #define IOM_CONTROLCHANNOTIMPL (IOM_TmdControlChan)IOM_mdNotImpl
 #define IOM_CREATECHANNOTIMPL (IOM_TmdCreateChan)IOM_mdNotImpl
 #define IOM_DELETECHANNOTIMPL (IOM_TmdDeleteChan)IOM_mdNotImpl
 #define IOM_SUBMITCHANNOTIMPL (IOM_TmdSubmitChan)IOM_mdNotImpl

typedef struct IOM_Packet { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} IOM_Packet;

/* Mini-driver's callback function. */
Void (*IOM_TiomCallback)(Ptr arg, IOM_Packet *packet);

Example For example mini-driver implementations, see the source and header
files in DDK driver folders.
A-4

mdBindDev
C Interface

Syntax status = mdBindDev(*devp, devid, devParams);

Parameters Prt *devp; /* address for global device data pointer */
Int devid; /* device id */
Ptr devParams; /* pointer to config parameters */

Return Value Int status; /* success or failure code */

Description The mdBindDev function is called by DSP/BIOS during device
initialization. It is called once per configured device and is called after the
mini-driver�s initialization function. For example, it would be called after
DSK5402_MCBSP_AD50_init().

This function is typically used to specify device-specific global data, such
as interrupts IDs and global data structures (for ROM-ability). Additional
system resources may be allocated by the mini-driver at runtime.

The devp parameter provides the address where the function should
place the global device data pointer.

The devid parameter is used to identify specific devices for systems that
have more than one device of a specific type. For example, several
McBSP mini-drivers use the devid parameter to specify which McBSP
port to allocate and configure.

The devParams parameter is a pointer to the configuration parameters to
be used to configure the device. For example, the C54XX_DMA_MCBSP
mini-driver declares device parameters as follows:

typedef struct C54XX_DMA_MCBSP_DevParams {
 Uns rxDmaId;
 Uns txDmaId;
 MCBSP_Config *mcbspCfg;
} C54XX_DMA_MCBSP_DevParams;
This function should return IOM_COMPLETED if it is successful. If a
failure occurs, it should return one of the a negative error codes listed in
Section A.1, Mini-Driver Interface Overview. If this function returns a
failure code, the DSP/BIOS initialization fails with a call to SYS_abort.

Example See Section 5.2.3, mdBindDev Function, page 5-8 for an example
mdBindDev function.

mdBindDev Bind device to mini-driver
IOM Interface A-5

mdControlChan
C Interface

Syntax status = mdControlChan (chanp, cmd, arg);

Parameters Ptr chanp; /* channel handle */
Uns cmd; /* control functionality to perform */
Ptr arg; /* optional device-defined data structure */

Return Value Int status; /* success or failure code */

Description A class driver calls this function to cause the mini-driver to perform some
type of control functionality. For example, it may cause the mini-driver to
reset the device or get the device status. Calling SIO_ctrl, PIO_ctrl, or
GIO_control results in execution of the appropriate mini-driver�s
mdControlChan function.

The chanp parameter provides a channel handle to identify the device
instance.

The cmd parameter indicates which control functionality should be
carried out.

/* Command codes for GIO_control and mdControlChan */
#define IOM_CHAN_RESET 0 /* reset channel only */
#define IOM_CHAN_TIMEDOUT 1
 /* channel timeout occurred */
#define IOM_DEVICE_RESET 2
 /* reset entire device */
The arg parameter is an optional device-defined data structure used to
pass control information between the device and the application

If successful, this function should return IOM_COMPLETED. If the cmd
value provided is unsupported, this function should return a status of
IOM_ENOTIMPL.

Example See Section 5.2.4, mdControlChan Function, page 5-10 for an example
mdControlChan function.

mdControlChan Perform channel control command
A-6

mdCreateChan
C Interface

Syntax status = mdCreateChan (*chanp, devp, name, mode, chanParams,
 cbFxn, cbArg);

Parameters Ptr *chanp; /* channel handle */
Ptr devp; /* device global data structure */
String name /* name of device instance */
Int mode /* input or output mode */
Ptr chanParams /*pointer to channel parameters */
IOM_TiomCallback cbFxn /* pointer to callback function */
Ptr cbArg /* callback function argument */

Return Value Int status; /* success or failure code */

Description A class driver calls this function to create a channel instance. Calling
GIO_create, SIO_create, or PIO_new results in execution of the
appropriate mini-driver�s mdCreateChan function.

The chanp parameter provides an address at which this function should
place a channel handle to identify the device instance. The channel
handle is a pointer to a device-specific data structure. See Section 5.2.3,
mdBindDev Function, page 5-8 for an example.

The devp parameter is a pointer to the device�s global data structure. This
is the value returned by the mini-driver�s mdBindDev call.

The name parameter is the name of the device instance. This is the
remainder of the device name after getting a complete match from the
DSP/BIOS device driver table. For example, this might contain channel
parameters.

The mode parameter specifies whether the device is being opened in
input mode, output mode, or both. The mode may be IOM_INPUT,
IOM_OUTPUT, or IOM_INOUT. If your driver does not support one or
more modes, this function should return IOM_EBADMODE for
unsupported modes.

The chanParams parameter is used to pass device- or domain-specific
arguments to the mini-driver. For example, the C54XX_DMA_MCBSP
driver declares a structure for channel parameters as follows:

typedef struct C54XX_DMA_MCBSP_ChanParams {
 DMA_Config *dmaCfg;
} C54XX_DMA_MCBSP_ChanParams;

mdCreateChan Create a device channel
IOM Interface A-7

mdCreateChan
The cbFxn parameter is a function pointer that points to the callback
function to be called by the mini-driver when it has completed a request.

The cbArg parameter is an argument to be passed back by the mini-
driver when it invokes the callback function.

Typically, the mdCreateChan function places the callback function and its
argument in the device-specific data structure. For example:

chan->cbFxn = cbFxn;
chan->cbArg = cbArg;
If successful, this function should return IOM_COMPLETED. If
unsuccessful, this function should return one of the a negative error
codes listed in Section A.1, Mini-Driver Interface Overview.

Example See Section 5.2.5, mdCreateChan Function, page 5-11 for an example
mdCreateChan function.
A-8

mdDeleteChan
C Interface

Syntax status = mdDeleteChan (Ptr chanp)

Parameters Ptr chanp; /* channel handle */

Return Value Int status; /* success or failure code */

Description A class driver calls this function to delete the specified channel instance.
Calling SIO_delete or GIO_delete results in execution of the appropriate
mini-driver�s mdDeleteChan function.

The chanp parameter provides a channel handle to identify the device
instance. The channel handle is a pointer to a device-specific data
structure. See the mdBindDev topic for an example.

If successful, this function should return IOM_COMPLETED. If
unsuccessful, this function should return one of the a negative error
codes listed in Section A.1, Mini-Driver Interface Overview.

Example See Section 5.2.6, mdDeleteChan Function, page 5-13 for an example
mdDeleteChan function.

mdDeleteChan Delete a channel
IOM Interface A-9

mdSubmitChan
C Interface

Syntax status = mdSubmitChan (chanp, *packet);

Parameters Ptr chanp; /* channel handle */
IOM_Packet *packet; /* pointer to IOM_Packet */

Return Value Int status; /* success or failure code */

Description A class driver calls this function to cause the mini-driver to process the
IOM_Packet. Calls to SIO_issue, PIP_put, GIO_submit, GIO_read,
GIO_write, GIO_abort, and GIO_flush result in execution of the
appropriate mini-driver�s mdSubmitChan function.

Note:

The mini-driver function mdSubmitChan must be written to be reentrant
to allow it to be called from multiple thread contexts.

The chanp parameter provides a channel handle to identify the device
instance. The channel handle is a pointer to a device-specific data
structure. See the mdBindDev topic for an example.

The packet parameter points to a structure of type IOM_Packet. This
structure is defined as follows:

typedef struct IOM_Packet { /* frame object */
 QUE_Elem link; /* queue link */
 Ptr addr; /* buffer address */
 Uns size; /* buffer size */
 Arg misc; /* reserved for driver */
 Arg arg; /* user argument */
 /* two fields added for use by IOM */
 Uns cmd; /* mini-driver command */
 Int status; /* status of command */
} IOM_Packet;
The value for the cmd code may be one of the following:

#define IOM_READ 0
#define IOM_WRITE 1
#define IOM_ABORT 2
#define IOM_FLUSH 3

mdSubmitChan Submit a packet to a channel for processing
A-10

mdSubmitChan
Additional cmd codes may be added for domain-specific commands.
Such codes should be constants with values greater than 127. See the
iom.h file for these cmd codes.

If the cmd code is IOM_READ or IOM_WRITE, this function should
queue the packet on the pending list.

If the cmd code is IOM_ABORT, this function should abort both read and
write packets.

If the cmd code is IOM_FLUSH, this function should complete queued
writes, but abort queued reads.

If this function successfully completes a read or write IOM_Packet
request, it should return IOM_COMPLETED as the return status. If this
function queues up a read or write request, it should return
IOM_PENDING. If this function successfully aborts or flushes a packet,
it should return IOM_COMPLETED. If unsuccessful, this function should
return one of the a negative error codes listed in Section A.1, Mini-Driver
Interface Overview.

Example See Section 5.2.7, mdSubmitChan Function, page 5-13 for an example
mdSubmitChan function.
IOM Interface A-11

mdUnBindDev
C Interface

Syntax status = mdUnBindDev(devp);

Parameters Ptr devp; /* global device data pointer */

Return Value Int status; /* success or failure code */

Description This function should free resources allocated by the mdBindDev function.

Currently, this function is not called as a result of any GIO functions or
used by the PIO or DIO class drivers. It may be used in the future to
support dynamic device driver loading and unloading.

The devp parameter is a pointer to the device�s global data structure. This
is the value returned by the mini-driver�s mdBindDev call.

If successful, this function should return IOM_COMPLETED. If
unsuccessful, this function should return a negative error code.

Example See Section 5.2.8, mdUnBindDev Function, page 5-15 for an example
mdSubmitChan function.

mdUnBindDev Unbind device from mini-driver
A-12

Appendix B

PIO Adapter

This appendix provides reference details for the PIO (Pipe I/O) adapter
interface.

B.1 PIO Adapter Interface Overview. B�2
PIO_ctrl . B�5
PIO_init . B�6
PIO_new . B�7
PIO_rxPrime . B�8
PIO_rxStart . B�9
PIO_txPrime . B�10
PIO_txStart . B�11
rxCallback . B�12
txCallback. B�13

Topic Page
B-1

PIO Adapter Interface Overview
B.1 PIO Adapter Interface Overview

The PIP/PIO class driver is used to create an interface between the PIP
(pipe) module and an IOM mini-driver.

Functions The PIO module provides the following functions:

❏ PIO_ctrl. Control call to mini-driver

❏ PIO_init. Initialize the PIO module

❏ PIO_new. Initialize PIO object for a channel

❏ PIO_rxPrime. Supply a frame to the receiver

❏ PIO_rxStart. Start receive with one or more frames

❏ PIO_txPrime. Supply a frame to the transmitter

❏ PIO_txStart. Start transmit with one or more frames

❏ rxCallback. Notify PIO of receive completion

❏ txCallback. Notify PIO of transmit completion

Description The PIO adapter obtains a buffer from the application through the buffer
manager and presents it to the mini-driver for consumption. The adapter
recognizes when the mini-driver is finished processing the buffer and
sends it back to the application through the buffer manager. This
communication is accomplished with a minimal amount of overhead and
complexity.

The pio.h file is provided in ddk_1_20\packages\ti\bios\drivers\pio.
Applications that use the PIO module must include this header file.

To use the PIO adapter, create the following objects in the configuration
for the application:

❏ SWI. Add a software interrupt from the SWI - Software Interrupt
Manager and choose Insert SWI. Rename the new SWI0 object. For
example, in the pip_audio example, the object is called swiEcho. In
the object�s properties window, enter the name of the function and the
desired mailbox value. For example, the pip_audio example uses
_echo as the function and 3 as the mailbox value.

❏ PIP. Add pipe objects from the PIP - Buffered Pipe Manager and
choose Insert PIP twice. For example, in the pip_audio example,
rename the first pipe to pipRx and the second pipe to pipTx. The
length of the buffers should be the same and can be any size. In the
example, the pipRx notifyWriter function setting should be
PIO_rxPrime(pioRx) and the notifyReader function settings should
be SWI_andn(swiEcho,1). The pipTx notifyWriter function setting
B-2

PIO Adapter Interface Overview
should be SWI_andn(swiEcho,2) and notifyReader function settings
should be PIO_txPrime(pioTx).

The PIO adapter uses the following basic types of functions:

❏ Prime functions. The PIP buffer manager calls rxPrime and txPrime
when the application sends a buffer to the device driver. These
functions use DSP/BIOS API calls to obtain a buffer from the buffer
manager and present it to the mini-driver. The "prime" functions are
the signaling interface between the application and the adapter.

❏ Callback functions. The rxCallback and txCallback functions are
the signaling interface between the mini-driver and the adapter.
During driver setup, the adapter tells the mini-driver which functions
to call when it finishes with the buffer. This callback signals the
adapter when a buffer is ready to be sent back to the buffer manager
and ultimately, the application.

❏ Transfer function. This function calls the device mini-driver's
mdSubmitChan function. The mdSubmitChan function of the mini-
driver receives a buffer from the adapter and then communicates the
new buffer information to the ISR. This communication is done
through the channel object.

The PIO adapter uses these functions to communicate between the
application and the mini-driver. This is shown in Figure 5. Arrows with full
or empty boxes attached indicate buffer flow; simple arrows indicate
critical function calls.

For an example that uses the PIO module, see the pip_audio.c example
in the ddk_1_20\packages\ti\bios\drivers\examples\audio folder.
PIO Adapter B-3

PIO Adapter Interface Overview
Figure 5-1. PIO Adapter Buffer Flow

Constants, Types,
and Structures

typedef struct PIO_Attrs {
 Ptr openArgs;
} PIO_Attrs;

/* default PIO_Attrs struct */
extern PIO_Attrs PIO_ATTRS;

processing thread (SW I)

PIO_rxPrime

I/O PERIPHERAL hardw are

IOM m ini-driver

PIO adapter

application

PIO_txPrime

INPUT OUTPUT

I/O PERIPHERAL

0x1 0x2

notifyW riter notifyReader

no
tif

yR
ea

de
r

no
tif

yW
rit

er

P IP_freePIP_get

transfer

mdSubmitChan

rxCallback

ISR

PIP_put PIP_alloc

PIP_put PIP_alloc

txCallbacktransfer

mdSubmitChan ISR

PIP_freePIP_get
B-4

PIO_ctrl
C Interface

Syntax status = PIO_ctrl (pio, cmd, arg);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */
Uns cmd; /* IOM command */
Ptr arg; /* IOM argument */

Return Value Bool status; /* success or failure code */

Reentrant No

Description PIO_ctrl is implemented as a macro and will pass its arguments directly
to the IOM ctrl function.

Constraints and
Calling Context

❏ Specific to the IOM mini-driver in use.

PIO_ctrl Control call to mini-driver
PIO Adapter B-5

PIO_init
C Interface

Syntax PIO_init();

Parameters None

Return Value Void

Reentrant No

Description This function initializes the PIO adapter module.

Constraints and
Calling Context

❏ Must be called before other PIO calls may be made.

Example The following example initializes the PIO module.

PIO_init();

PIO_init Initialize the PIO module
B-6

PIO_new
C Interface

Syntax PIO_new (pio, pip, name, mode, *attrs);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */
PIP_Handle pip; /* pointer to channel's PIP object */
String name; /* name of the IOM device driver */
Int mode; /* input, output, or input/output mode */
PIO_Attrs *attrs; /* pointer to attributes data structure */

Return Value Void

Reentrant No

Description PIO_new initializes the PIO object associated with a new channel, and
calls the mdCreateChan function of the IOM mini-driver for the channel.
PIO_new must be called to initialize the I/O prior to any transfers
occurring. PIO_new is typically called from main.

Pass the pointer to the PIO object and the pointer to the PIP object to
associate with that channel.

The last argument is for various attributes, including a generic argument
to be passed to IOM open. If no attributes are specified, the attrs
parameter may be NULL.

If the mdCreateChan call fails, then PIO_new calls SYS_abort.

Constraints and
Calling Context

❏ PIO_new must be called to initialize the I/O prior to any transfers.

Example The following calls bind the Rx and Tx PIPs to IOM channels:

/* Bind PIPs to channels using the PIO class drivers */
PIO_new(&pioRx, &pipRx, "/codec", IOM_INPUT, NULL);
PIO_new(&pioTx, &pipTx, "/codec", IOM_OUTPUT, NULL);

PIO_new Initialize PIO object for a channel
PIO Adapter B-7

PIO_rxPrime
C Interface

Syntax PIO_rxPrime (pio);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */

Return Value Void

Reentrant No

Description PIO_rxPrime submits one frame to the IOM mini-driver if the receiver can
accept it. The receiver's ability to accept another frame is determined by
comparing the number of frames submitted with the maximum number of
frames the mini-driver can accept ("submit limit"). The submit limit is
initially set to two (2) frames. The submit limit is updated to reflect the
maximum frames the mini-driver can accept if and when the mini-driver
fails to accept a frame.

Constraints and
Calling Context

❏ PIO_rxPrime is typically configured as the notifyWriter function of
receive pipes.

Example The following example calls PIO_rxPrime:

PIO_rxPrime(&pioRx);

PIO_rxPrime Supply a frame to the receiver
B-8

PIO_rxStart
C Interface

Syntax PIO_rxStart (pio, frameCount);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */
Uns frameCount; /* number of frames to submit */

Return Value Void

Reentrant No

Description PIO_rxStart submits as many frames as the mini-driver can accept, up to
the number specified by frameCount.

Constraints and
Calling Context

❏ PIO_rxStart may only be called in main before interrupts are enabled.

Example The following example primes the receive side with empty buffers to be
filled:

PIO_rxStart(&pioRx, PIP_getWriterNumFrames(&pipRx));

PIO_rxStart Start receive with one or more frames
PIO Adapter B-9

PIO_txPrime
C Interface

Syntax PIO_txPrime (pio);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */

Return Value Void

Reentrant No

Description PIO_txPrime submits one frame to the IOM receiver if the transmitter can
accept it. The transmitter's ability to accept another frame is determined
by comparing the number of frames submitted with the maximum number
of frames the mini-driver can accept ("submit limit"). The submit limit is
initially set to two (2) frames. The submit limit is updated to reflect the
maximum frames the mini-driver can accept if and when the mini-driver
fails to accept a frame.

Constraints and
Calling Context

❏ PIO_txPrime is typically configured as the notifyReader function of
transmit pipes.

Example The following example calls PIO_txPrime:

PIO_txPrime(&pioTx);

PIO_txPrime Supply a frame to the transmitter
B-10

PIO_txStart
C Interface

Syntax PIO_txStart (pio, frameCount, Uns initialValue);

Parameters PIO_Handle pio; /* pointer to channel's PIO object */
Uns frameCount; /* number of frames to submit */
Uns initialValue; /* value used to fill frame */

Return Value Void

Reentrant No

Description PIO_txStart submits as many frames as the mini-driver can accept, up to
the number specified by frameCount.

Constraints and
Calling Context

❏ PIO_txStart may only be called in main before interrupts are enabled.

Example The following example primes the transmit side with buffers of silence:

PIO_txStart(&pioTx, PIP_getWriterNumFrames(&pipTx), 0);

PIO_txStart Start transmit with one or more frames
PIO Adapter B-11

rxCallback
C Interface

Syntax rxCallback (arg, *packet);

Parameters Arg arg; /* pointer to channel's PIO object */
IOM_Packet *packet; /* packet pointing to buffer to be processed */

Return Value Void

Reentrant No

Description The rxCallback function completes the operation started by the call to the
IOM mini-driver's mdSubmitChan function. The pipe associated with the
receive channel is updated to show the received data. Another
mdSubmitChan operation is started to keep the flow of data
uninterrupted.

The rxCallback function is typically called from the ISR routine that
services the associated IOM mini-driver.

Constraints and
Calling Context

❏ Interrupts for the channel must be disabled.

rxCallback Notify PIO of receive completion
B-12

txCallback
C Interface

Syntax txCallback (arg, *packet);

Parameters Arg arg; /* pointer to channel's PIO object */
IOM_Packet *packet; /* packet pointing to buffer to be processed */

Return Value Void

Reentrant No

Description The txCallback function completes the operation started by the call to the
IOM mini-driver's mdSubmitChan function. The pipe associated with the
transmit channel is updated so the frame can be reused. Another
mdSubmitChan operation is started to keep the flow of data
uninterrupted.

The txCallback function is typically called from the ISR routine that
services the associated IOM mini-driver.

Constraints and
Calling Context

❏ Interrupts for the channel must be disabled.

txCallback Notify PIO of transmit completion
PIO Adapter B-13

B-14

Appendix C

Porting from the LIO to IOM Model

This appendix compares the LIO and IOM models and explains how
users of the LIO device driver model can migrate applications to use the
updated IOM device driver model.

C.1 Comparing the LIO and IOM Models . C�2
C.2 Migrating an LIO Application to Use an IOM Mini-Driver C�4
C.3 Migrating an LIO Controller to an IOM Mini-Driver. C�5

Topic Page
C-1

Comparing the LIO and IOM Models
C.1 Comparing the LIO and IOM Models

In February 2002, Texas Instruments released an application note titled
Writing DSP/BIOS Device Drivers For Block I/O (SPRA802). This
application note introduced a standard method for implementing block
I/O device drivers (such as those used with streaming audio codecs) to
work with applications using DSP/BIOS.

The DSP/BIOS IOM device driver model is quite similar to the LIO model.
In fact, LIO was the starting point for designing the IOM interfaces.
However, unlike LIO, the IOM model was defined to accommodate not
just block I/O device drivers, but also to support devices such as video
ports, UART interfaces, and bus drivers (such as PCI and USB).

An important point to remember is that both LIO and IOM device drivers
can co-exist in a single system. There should be no problem in integrating
drivers of both types to be used with a single application.

Note:

Because of the IOM model's greater flexibility, we recommend its use
for the implementation of new drivers going forward.

C.1.1 Review of LIO Concepts

The LIO device driver model is very similar to what has been described
in this manual. That is, an LIO device "controller" (which the IOM model
calls a mini-driver) has a standard set of interfaces so that it can be used
by DSP/BIOS applications. Two adapters called DLIO and PLIO (which
are similar to the IOM model's DIO and PIO adapters) allow the controller
to work with SIO-based and PIP-based applications, respectively.

Table 5-1. Component Comparison for LIO and IOM

The LIO adapters (DLIO and PLIO) call the controller when a new buffer
is submitted by the application for reading or writing. The controller then
presents this buffer to the underlying device hardware�usually through
an interrupt service routine. When the ISR is finished with the buffer, it

Description LIO Components IOM Components

DSP/BIOS I/O Modules SIO or PIP SIO or PIP

Generic portion device adapter
(DLIO or PLIO)

adapter
(DIO or PIO)

Hardware-specific portion device controller mini-driver
C-2

Comparing the LIO and IOM Models
signals the adapter via a "callback", meaning that it calls a user-specified
function appropriate for the operation being performed (read or write).
The controller also provides other functionality, such as initializing the
device and aborting data buffers that are still owned by the device driver.

C.1.2 LIO Adapters vs. IOM Class Drivers

As mentioned earlier, both the LIO and IOM models specify a two-level
architecture. This consists of an adapter and a controller in the LIO case,
and a class driver (which includes an adapter) and a mini-driver in the
IOM case. Both models use this architecture to simplify the
implementation process and to maximize the re-use of code across
different driver instances.

One important architectural difference is that, unlike LIO controllers, IOM
mini-drivers must be implemented to handle multiple submit calls and so
need to queue read and write requests. As a result, IOM class drivers are
smaller in size than LIO adapters, while IOM mini-drivers are larger in
size than LIO controllers. This change was made for performance
reasons. Rather than executing the callback and submit functions in the
ISR (as LIO drivers do), jobs are queued in the mini-driver.

C.1.3 LIO Interface vs. IOM Interface Functions

The LIO controller interface and the IOM mini-driver interface have many
similarities. Table 5-2 shows the individual interface calls for both and
how one maps into the other:

Table 5-2. Function Comparison for LIO and IOM

LIO Controller
Functions

IOM Mini-Driver
Functions Description

<controller>_init() XXX_init() Static driver initialization

<controller>_setup() mdBindDev() Driver setup

open() mdCreateChan() Open a device channel

close() mdDeleteChan() Close a device channel

submit() mdSubmitChan() Submit a buffer for I/O

cancel() mdSubmitChan() Cancel a buffer in process

ctrl() mdControlChan() Driver control functions

ISR ISR Interrupt service routine
Porting from the LIO to IOM Model C-3

Migrating an LIO Application to Use an IOM Mini-Driver
As Table 5-2 indicates, most LIO controller functions have a direct
analogue in the IOM interface definitions. Channel creation and deletion
are handled in a similar manner, as is driver control. The buffer submit()
function, which is the heart of device driver functionality, is also similar
between the two models. The IOM mdSubmitChan call also allows Flush
and Abort commands to be passed.

C.2 Migrating an LIO Application to Use an IOM Mini-Driver

This section does not provided detailed step-by-step descriptions for
turning an application that uses an LIO controller into an application that
uses an IOM mini-driver. The following are some important points to
remember if you are going through this process.

C.2.1 Configuration

Certain objects used by both LIO and IOM device drivers are configured
through the DSP/BIOS Configuration Tool. The key difference between
configuring the two is support for GIO configuration. You can see a GIO
module icon in the Input/Output tree. If you wish, you can configure the
GIO module's default blocking mechanism to use a something other than
the DSP/BIOS SEM module.

C.2.2 Initialization

LIO device drivers are initialized by explicitly calling the driver_init()
function followed by the driver_setup() function. The first function runs
the driver's hardware initialization code, while the second performs the
basic setup of the driver's data structures to either default values or to
user-specified values depending on what was passed as an argument to
the function.

Using IOM device drivers does not require explicit calls to driver_init()
and driver_setup() functions. Instead, the driver_init() function is called
automatically during the DSP/BIOS initialization sequence. The IOM
mini-driver can also set up data structures based on either default values
or values passed by the class driver. The mini-driver function
mdBindDev() handles this and is automatically called by DSP/BIOS after
each configured device�s driver_init() function.
C-4

Migrating an LIO Controller to an IOM Mini-Driver
C.3 Migrating an LIO Controller to an IOM Mini-Driver

This section does not provided detailed step-by-step descriptions for
turning an LIO controller into an IOM mini-driver. The following are some
important points to remember if you are going through this process:

❏ Refer to Table 5-2 to see how LIO controller functions map to the IOM
mini-driver functions. For the most part, functions should be able to
be converted in a straightforward manner.

❏ Unlike LIO controllers, IOM mini-drivers must be able to queue up
mdSubmitChan calls that are made before the previous I/O submit
job has finished.

❏ IOM mini-drivers receive an I/O packet instead of a raw buffer pointer.
This packet contains not only a pointer to an application supplied
buffer, but also additional information such as a command field, and
size and callback information.

❏ Unlike LIO controllers, IOM mini-drivers can handle Flush and Abort
commands in the mdSubmitChan call to allow for purging pending
input and output processing.

Both the LIO application note (SPRA802) and the IOM DDK product
provide example codec drivers for the �C5402 and �C6711 DSKs. You can
use these implementations to compare and contrast the two device driver
models.
Porting from the LIO to IOM Model C-5

C-6

Appendix D

The ASYNC Extension to the GIO API

This appendix describes the ASYNC extension to the GIO API.

D.1 ASYNC Module Overview . D�2
ASYNC_abort . D�5
ASYNC_control . D�6
ASYNC_create . D�7
ASYNC_delete . D�9
ASYNC_flush . D�10
ASYNC_read . D�11
ASYNC_write . D�13

Topic Page
D-1

ASYNC Module Overview
D.1 ASYNC Module Overview

The ASYNC macros are provided with the Driver Developer�s Kit for use
in applications where threads cannot block for synchronization.

Functions The ASYNC module provides the following macros:

❏ ASYNC_abort. Abort all input and output.

❏ ASYNC_control. Perform device-specific control call.

❏ ASYNC_create. Allocate and initialize a GIO object.

❏ ASYNC_delete. Delete underlying mini-drivers and free GIO object
and its structures.

❏ ASYNC_flush. Drain output buffers and discard any pending input.

❏ ASYNC_read. Submit an asynchronous (non-blocking) read request
to mini-driver.

❏ ASYNC_write. Submit an asynchronous (non-blocking) write request
to mini-driver.

These macros correspond to the GIO API functions, which are described
in the DSP/BIOS API Reference for your DSP family.

Description The ASYNC module supports asynchronous (non-blocking) use of the
GIO APIs and mini-drivers. Multiple requests can be sent to a mini-driver
without causing the thread to block while waiting for resources. This is
necessary if the thread that reads from or writes to the mini-driver is a
SWI (software interrupt) thread, which cannot block.

Non-blocking calls are accomplished through the use of an application-
specified callback function. This function runs when an I/O request made
by ASYNC_read or ASYNC_write has been completed.

When a callback function is specified, the GIO class driver does not
perform its usually synchronization using a SEM_pend and SEM_post (or
whatever synchronization functions are specified in the GIO configuration
properties). Since the GIO class driver does not perform synchronization
when a callback function is used, the application is responsible for
synchronization.
D-2

ASYNC Module Overview
Figure 5-2 shows the call flow resulting from ASYNC_read or
ASYNC_write as it passes through the ASYNC, GIO, and mini-driver
(IOM) levels of an application.

Figure 5-2. Call Flow for ASYNC_read and ASYNC_write

In applications that use SWI threads, the callback function contains a call
to SWI_andnHook or a similar API that posts a SWI after I/O is complete.

Mini-drivers typically do not perform any blocking internally. The intent of
the mini-driver architecture is to keep mini-drivers as simple as possible.

Note:

ASYNC_abort and ASYNC_flush are synchronous functions. They
may block while waiting for requests to be aborted or flushed. As a
result, these functions must be called from the context of TSK thread.

The ASYNC module provides macros built on top of GIO functions. While
one could use the GIO_submit function with its callback parameter

Application

Class driver
(GIO)

Mini-driver
(IOM)

Hardw are

GIO_submit

mdSubmitChan

completed
or pending

 Calling Context

appCallback(arg, status,
 bufp, size)

_isr

IOM _Packet

bufp data
structure

bufp data
structure

ISR Context

IOM _Packet

ASYNC_read /
ASYNC_write
The ASYNC Extension to the GIO API D-3

ASYNC Module Overview
instead of the ASYNC_read and ASYNC_write functions, this module is
provided to clarify the intent of an application that uses the IOM model
and mini-drivers asynchronously.

Constants, Types,
and Structures

Uses GIO module constants, types, and structures. See Section A.1,
Mini-Driver Interface Overview.
D-4

ASYNC_abort
C Interface

Syntax status = ASYNC_abort(gioChan);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description ASYNC_abort is a synchronous call. It returns only when all I/O has been
successfully aborted.

The gioChan parameter is a handle to the GIO object created by the call
to ASYNC_create.

When this call is made, all pending packets are completed with a status
of IOM_ABORTED. An application uses this call to return the device to its
initial state. Usually this is done in response to an unrecoverable error at
the device level.

ASYNC_abort returns IOM_COMPLETED upon successfully aborting all
input and output requests. If an error occurs, the device returns a
negative value. For a list of error values, see Section A.1, Mini-Driver
Interface Overview.

Internally, ASYNC_abort calls GIO_abort, which calls the associated
mini-driver�s mdSubmitChan function. The IOM_ABORT command is
passed to the mdSubmitChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

❏ ASYNC_abort cannot be called from a SWI or HWI unless the GIO
configuration properties are set to use non-blocking synchronization
methods.

ASYNC_abort Abort all input and output
The ASYNC Extension to the GIO API D-5

ASYNC_control
C Interface

Syntax status = ASYNC_control(gioChan, cmd, args);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Int cmd; /* control functionality to perform */
Ptr args; /* data structure to pass control information */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description An application calls ASYNC_control to configure or perform control
functionality on the communication channel.

The gioChan parameter is a handle to the GIO object created by the call
to ASYNC_create.

The cmd parameter may be one of the command codes for GIO_control
listed in Section A.1, Mini-Driver Interface Overview. A mini-driver may
add command codes for additional functionality.

The args parameter points to a data structure defined by the device to
allow control information to be passed between the device and the
application. This structure can be generic across a domain or specific to
a single mini-driver. In some cases, this argument may point directly to a
buffer that holds the control data. In other cases, there may be a level of
indirection if the mini-driver expects a data structure to package many
components of data required for the control operation. In the simple case
where no data is required, this parameter may just be a predefined
command value.

ASYNC_control returns IOM_COMPLETED upon successfully carrying
out the functionality requested. If an error occurs, the device returns a
negative value. For a list of error values, see Section A.1, Mini-Driver
Interface Overview.

Internally, ASYNC_control calls GIO_control, which calls the associated
mini-driver�s mdControlChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

ASYNC_control Perform device-specific control call
D-6

ASYNC_create
C Interface

Syntax gioChan = ASYNC_create(name, mode, *status, optArgs, *attrs)

Parameters String name /* name of the device to open */
Int mode /* mode in which the device is to be opened */
Int *status /* address location to place driver return status */
Ptr optArgs /* optional domain/device-specific arguments */
GIO_Attrs *attrs /* pointer to an GIO_Attrs structure */

Return Value GIO_Handle gioChan; /* handle to an instance of the device */

Reentrant Yes

Description ASYNC_create allocates and initializes a GIO object.

The name argument is the name specified for the device when it was
created in the configuration or at runtime. It is used to find a matching
name in the device table.

The mode argument specifies the mode in which the device is to be
opened. This may be IOM_INPUT, IOM_OUTPUT, or IOM_INOUT.

If the status parameter is non-NULL, a status value is placed at the
address specified by the status param.

The optArgs parameter is a pointer that may be used to pass device or
domain-specific arguments to the mini-driver. The contents at the
specified address are interpreted by the mini-driver in a device-specific
manner.

The attrs parameter is a pointer to a structure of type GIO_Attrs.

typedef struct GIO_Attrs {
 Int nPackets; /* number of asynch I/O packets */
 Uns timeout; /* for blocking calls (SYS_FOREVER) */
} GIO_Attrs;
The ASYNC_create call allocates a list of IOM_Packet items as specified
by the nPackets member of the GIO_Attrs structure and stores them in
the GIO object it creates.

ASYNC_create returns a handle to the GIO object created upon a
successful open. The handle returned by this call should be used by the
application in subsequent calls to ASYNC functions. This function returns

ASYNC_create Allocate and initialize a GIO object
The ASYNC Extension to the GIO API D-7

ASYNC_create
a NULL handle if the device could not be opened. For example, if a
device is opened in a mode not supported by the device, this call returns
a NULL handle.

Internally, ASYNC_create calls GIO_create, which calls the associated
mini-driver�s mdCreateChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized.

Example The following example uses ASYNC_create:

/* create GIO objs */
for (i = 0; i < CHAN_NUM; i++) {
 gio[i] = ASYNC_create("/vt1423pci", IOM_INOUT,
 NULL, &pciAttrs[i], &gioAttrs[i]);
 if (gio[i] == NULL) {
 LOG_printf(&trace, "ERROR!!! GIO_create NULL!");
 }
}

D-8

ASYNC_delete
C Interface

Syntax status = ASYNC_delete(gioChan);

Parameters GIO_Handle gioChan; /* handle to device instance to be closed */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description ASYNC_delete closes a communication channel opened prior to this call
with ASYNC_create. This function deallocates all memory allocated for
this channel and closes the underlying device. All pending input and
output are cancelled and the corresponding interrupts are disabled.

The gioChan parameter is the handle returned by ASYNC_create.

This function returns IOM_COMPLETED if the channel is successfully
closed. If an error occurs, the device returns a negative value. For a list
of error values, see Section A.1, Mini-Driver Interface Overview.

Internally, ASYNC_delete calls GIO_delete, which calls the associated
mini-driver�s mdDeleteChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

ASYNC_delete Delete underlying mini-drivers and free GIO object and its structures
The ASYNC Extension to the GIO API D-9

ASYNC_flush
C Interface

Syntax status = ASYNC_flush(gioChan);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description An application calls ASYNC_flush to flush the input and output channels
of the device. All input data is discarded; all pending output requests are
completed. When this call is made, all pending input calls are completed
with a status of IOM_FLUSHED, and all output calls are completed
routinely.

ASYNC_flush is a synchronous call. It returns only when all I/O has been
successfully flushed.

The gioChan parameter is the handle returned by ASYNC_create.

This call returns IOM_COMPLETED upon successfully flushing all input
and output. If an error occurs, the device returns a negative value. For a
list of error values, see Section A.1, Mini-Driver Interface Overview.

Internally, ASYNC_flush calls GIO_flush, which calls the associated mini-
driver�s mdSubmitChan function. The IOM_FLUSH command is passed
to the mdSubmitChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

❏ ASYNC_flush cannot be called from a SWI or HWI unless the GIO
configuration properties are set to use non-blocking synchronization
methods.

ASYNC_flush Drain output buffers and discard any pending input
D-10

ASYNC_read
C Interface

Syntax status = ASYNC_read(gioChan, bufp, *pSize, *appCallback);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
Uns *pSize /* pointer to size of bufp structure */
GIO_AppCallback *appCallback /* pointer to callback structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description An application calls ASYNC_read to asynchronously read a specified
number of bytes from the communication channel.

The gioChan parameter is the handle returned by ASYNC_create.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may be
generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the read
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be read from, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to R, G, B buffers, their sizes, video
format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the
returned data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of bytes read from the device. This
parameter relevant only if the bufp parameter points to a raw data buffer.
In cases where it points to a device-defined structure it is redundant�the
size of the structure is known to the mini-driver and the application. At
most, it can be used for error checking.

In order for ASYNC_read to be performed asynchronously, the
appCallback parameter must point to a callback structure that contains
the callback function to be called when the queued request is completed.

ASYNC_read Submit an asynchronous (non-blocking) read request to mini-driver
The ASYNC Extension to the GIO API D-11

ASYNC_read
ASYNC_read returns IOM_COMPLETED upon successfully reading the
requested number of bytes from the device. If an error occurs, the device
returns a negative value. For a list of error values, see Section A.1, Mini-
Driver Interface Overview.

Internally, ASYNC_read calls GIO_submit, which calls the associated
mini-driver�s mdSubmitChan function. The IOM_READ command is
passed to the mdSubmitChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

Example The following example uses ASYNC_read:

status = ASYNC_read(gio[chanNum], curReq, &size,
 &gioCallback[submitReqIndex]);
D-12

ASYNC_write
C Interface

Syntax status = ASYNC_write(gioChan, bufp, *pSize, *appCallback);

Parameters GIO_Handle gioChan; /* handle to an instance of the device */
Ptr bufp /* pointer to data structure for buffer data */
Uns *pSize /* pointer to size of bufp structure */
GIO_AppCallback *appCallback /* pointer to callback structure */

Return Value Int status; /* returns IOM_COMPLETED if successful */

Reentrant Yes

Description The application uses this function to write a specified number of bytes to
the communication channel.

The gioChan parameter is the handle returned by GIO_create.

The bufp parameter points to a device-defined data structure for passing
buffer data between the device and the application. This structure may be
generic across a domain or specific to a single mini-driver. In some
cases, this parameter may point directly to a buffer that holds the write
data. In other cases, this parameter may point to a structure that
packages buffer information, size, offset to be written to, and other
device-dependent data. For example, for video capture devices this
structure may contain pointers to R, G, B buffers, their sizes, video
format, and a host of data required for reading a frame from a video
capture device. Upon a successful read, this argument points to the
returned data.

The pSize parameter points to the size of the buffer or data structure
pointed to by the bufp parameter. When the function returns, this
parameter points to the number of bytes written to the device. This
parameter relevant only if the bufp parameter points to a raw data buffer.
In cases where it points to a device-defined structure it is redundant�the
size of the structure is known to the mini-driver and the application. At
most, it can be used for error checking.

In order for ASYNC_write to be performed asynchronously, the
appCallback parameter must point to a callback structure that contains
the callback function to be called when the queued request is completed.

ASYNC_write Submit an asynchronous (non-blocking) write request to mini-driver
The ASYNC Extension to the GIO API D-13

ASYNC_write
GIO_write returns IOM_COMPLETED upon successfully writing the
requested number of bytes to the device. If an error occurs, the device
returns a negative value. For a list of error values, see Section A.1, Mini-
Driver Interface Overview.

Internally, ASYNC_write calls GIO_submit, which calls the associated
mini-driver�s mdSubmitChan function. The IOM_WRITE command is
passed to the mdSubmitChan function.

Constraints and
Calling Context

❏ This function can be called only after the device has been loaded and
initialized. The handle supplied should have been obtained with a
prior call to ASYNC_create.

Example The following example uses ASYNC_write:

status = ASYNC_write(gio[chanNum], curReq, &size,
 &gioCallback[submitReqIndex]);
D-14

Appendix E

Glossary

This appendix provides definitions for terms related to device drivers.

❏ adapter. The interface between application-level calls and a mini-
driver. The term adapter was also used for this purpose in the LIO
model. The adapter is part of a class driver. An adapter may or may
not provide an API.

❏ ASYNC module. An extension to the GIO module for use when
asynchronous I/O processing is needed.

❏ asynchronous. Processing that occurs without blocking.

❏ blocking. Waiting for a resource to be available or for the end of a
timeout if one was specified. TSK threads can block, and therefore
can be processed synchronously. SWI and HWI threads cannot, and
therefore must be processed asynchronously.

❏ channel. The type of object managed by a mini-driver. Each channel
corresponds to an instance of a device.

❏ Chip Support Library (CSL). The API library provided with Code
Composer Studio for interaction with on-chip and off-chip peripherals
such as McBSPs. The library is different for each chip family. The
objects used by the CSL can be configured in the DSP/BIOS
Configuration Tool or in a DSP/BIOS Tconf script.

❏ class driver. The interface between application-level calls and a
mini-driver. A class driver may include both an API module and an
adapter (for example, PIP/PIO or SIO/DIO). Alternately, a class driver
may be implemented as an API interface only (for example, GIO).

❏ controller. The term used for the device-specific portion of a driver
in the LIO model. The corresponding portion of the IOM model is the
mini-driver.

❏ DEV module. A DSP/BIOS module that manages user-defined
devices that must be configured in order to use an IOM mini-driver.
The DEV module also specified a DEV_Fxns structure, which is not
used with the IOM model.

❏ device. A hardware input or output peripheral accessible by the DSP.
E-1

Glossary
❏ DIO adapter. The adapter to use when the application makes SIO
calls for stream I/O. This adapter does not include API functions.

❏ DLIO adapter. The SIO-based adapter provided with the LIO model.

❏ DMA. (Direct Memory Access) A mechanism whereby a device other
than the host processor contends for, and receives, mastery of the
memory bus so that data transfers can take place independent of the
host.

❏ driver. A software mechanism for sending input or output data to a
device.

❏ Driver Developer�s Kit (DDK). The software distribution that
provides files for creating an integrating mini-drivers that use the IOM
model.

❏ EDMA. (Enhanced DMA) A controller that acts as a highly-efficient
data transfer engine, controlling all of the data movement beyond the
level-two memory of the device.

❏ GIO module. A DSP/BIOS module that provides an extensible class
driver API. An application may call GIO module APIs to interface to a
mini-driver.

❏ HWI module. A DSP/BIOS module used to manage hardware
interrupt threads (also known as ISRs). Hardware interrupt threads
cannot block while waiting for resources.

❏ IOM interface. The module used to implement a mini-driver. Several
IOM structures are also used by the class-driver. The entire class
driver/mini-driver model described in this book is called the �IOM
model�.

❏ IOM_Fxns table. The table structure that references the functions
implemented for a particular mini-driver.

❏ IOM_Packet. A structure created by the class driver and used to
pass commands, data buffers, and status information between the
class driver and mini-driver.

❏ LIO module. The module that corresponds to IOM in the LIO device
driver model.

❏ McBSP. (Multi-Channel Buffered Serial Port) Typically the EDMA or
DMA is used to perform read/write transfers from/to the McBSP.
These transfers are read/write synchronized and the McBSP
provides these synchronization events.

❏ McASP. (Multi-Channel Audio Serial Port) This port functions as a
general-purpose audio serial port optimized for the needs of
multichannel audio applications.
E-2

Glossary
❏ mini-driver. The term used for the device-specific portion of a driver
in the IOM model. Mini-drivers are implemented using the IOM
module.

❏ PCI controller. (Peripheral Component Interconnect) A high-speed
local bus that supports data-transfer operating at 33 MHz or 66 MHz.

❏ PIO adapter. The adapter to use when the application makes PIP
calls for stream I/O. This adapter includes API calls that the
application must make.

❏ PIP module. A DSP/BIOS module used to manage pipe I/O objects.
Pipe objects can have callback functions specified for the reader and
writer. Pipe objects are typically used with SWI threads and non-
blocking execution.

❏ PLIO adapter. The PIP-based adapter provided with the LIO model.

❏ queue. An object type managed by the DSP/BIOS QUE module.
Queues maintain a list of elements that can be manipulated in
various ways.

❏ semaphore. An object type managed by the DSP/BIOS SEM
module. A semaphore synchronizes access to resources by allowing
various threads to pend on and post the semaphore.

❏ SIO module. A DSP/BIOS module used to manage stream I/O
objects. Stream objects are typically used with TSK threads and
blocking execution, though use with SWI threads is now possible.

❏ SWI module. A DSP/BIOS module used to manage software
interrupt threads. Software interrupt threads cannot block while
waiting for resources.

❏ synchronous. Processing that occurs with blocking while waiting for
resource availability.

❏ TSK module. A DSP/BIOS module used to manage task threads.
Task threads can block while waiting for resources.

❏ UART. (Universal Asynchronous Receiver-Transmitter) A UART
handles asynchronous serial communication. A key component of
the serial communications port.

❏ UDEV object. An object type managed by the DEV module.
Glossary E-3

E-4

This is a draft version printed from file: apirefIX.fm on 8/1/05
Index
A
abort requests 5-4
adapter 2-11, E-1
addr field 2-8
application developer 1-2
architecture 2-3
arg field 2-8
ASYNC module 4-2, D-1, E-1
ASYNC_abort D-5
ASYNC_control D-6
ASYNC_create D-7
ASYNC_delete D-9
ASYNC_flush D-10
ASYNC_read D-11
ASYNC_write D-13
asynchronous E-1
audio folder 1-8

B
benefits 1-4
binding 2-4
BIOS_INSTALL_DIR environment variable 1-3
blocking E-1
BSL_INSTALL_DIR environment variable 1-3

C
call flow 2-5, 2-9
callback functions 2-12, 2-13, B-3
cbArg field 5-4
cbFxn field 5-4
channel E-1
channel handle 2-6
channel instances 2-4
channel operations 2-8
channel parameters 3-6
ChanObj structure 5-3, 5-7
Chip Support Library (CSL) E-1
class driver 1-4, 1-5, 2-2, 2-11, E-1

cmd field 2-8
controller C-2, E-1
Create all DIO Objects Statically 3-5
Create Function 3-10
CSL_INSTALL_DIR environment variable 1-3

D
data flow 2-5
DDK 1-3
DDK_INSTALL_DIR environment variable 1-3
debug folder 1-8
Delete Function 3-10
DEV module 2-11, E-1
DEV_Fxns table type 3-3
device E-1
device control 2-10
device global data ptr 3-3
device id 3-3
device instances 2-4
device name 3-6
device params ptr 3-3
devid parameter 5-2
devParams parameter 5-7
DIO adapter 2-11, 3-4, E-2
DLIO adapter C-2, E-2
DMA E-2
doc folder 1-8
driver E-2
driver developer 1-2
Driver Developer�s Kit (DDK) 1-3, E-2
DSP/BIOS

environment variables 1-3
version requirements 1-3

E
EDMA E-2
Enable General Input/Output Module 3-10
environment variables 1-3
error codes 4-5
Index--1

 Index
example applications 1-8
examples folder 1-8

F
file system stacks 4-2
flush requests 5-4
folders 1-6
frame video module (FVID) 4-5
freeList field 4-4
function table pointer 3-3
function table type 3-3
FVID module 4-5
FVID_alloc 4-6
FVID_exchange 4-6
FVID_free 4-6

G
GIO class driver 1-5, 2-13, 3-10, 4-2
GIO module 3-10, E-2
GIO_Obj structure 4-4
GIO_submit

video macros 4-6
GIO_submit macros D-2
global device data 5-3

H
HWI module E-2

I
init function 3-3
initialization 2-4, 5-6, 5-7
installation 1-3
IOM interface A-1, E-2
IOM model C-1
IOM_ABORT 5-4
IOM_CHAN_RESET 5-5
IOM_CHAN_TIMEDOUT 5-5
IOM_CNTL_USER 5-5
IOM_DEVICE_RESET 5-5
IOM_ENOTIMPL 2-10, 5-5
IOM_FLUSH 5-4
IOM_Fxns structure 5-6, A-2
IOM_Fxns table E-2
IOM_Fxns table type 3-3
IOM_Packet 2-7, E-2
IOM_READ 5-4

IOM_WRITE 5-4
ISR functions

examples 5-16
ISRs 5-4

L
library files 1-8
link field 2-7
LIO device controller C-2
LIO model C-1
LIO module E-2

M
McASP E-2
McBSP E-2

multiple instances 2-5
mdBindDev function 5-2, A-5

example 5-8
mdChan field 4-4
mdControlChan function 5-5, A-6

example 5-10
mdCreateChan function 5-3, A-7

example 5-11
mdDeleteChan function 5-3, A-9

example 5-13
mdSubmitChan function 5-4, A-10

example 5-13
mdUnBindDev function A-12

example 5-15
migration

application C-4
LIO controller C-5

mini-driver 1-4, 2-2, E-3
registering 3-2

misc field 2-8
mode field 4-4, 5-3
multiple device instances 5-2

N
notifyReader function 2-12, 3-8
notifyWriter function 2-12, 3-8

P
package folders 1-8
packets 2-7
partitioning 2-2
Index--2

Index
PCI controller E-3
Pend Function 3-10
pendList field 5-3
PIO adapter 2-12, 3-7, B-1, E-3
pio folder 1-8
PIO module 3-9
PIO_ctrl B-5
PIO_init B-6
PIO_new B-7
PIO_rxPrime B-8
PIO_rxStart B-9
PIO_txPrime B-10
PIO_txStart B-11
PIP module 2-11, E-3
PIP objects 3-8
PIP/PIO class driver 1-5, 2-12, 3-7
pip_audio application 1-9, 3-7
pipes 2-12
pjt files 1-8
PLIO adapter C-2, E-3
Post Function 3-10
prime functions 2-13, B-3
project files 1-8

Q
queue E-3

R
registering mini-driver 3-2
release folder 1-8
rxCallback function B-12
rxIsr function

example 5-16

S
sample-by-sample device driver 5-6

semaphore E-3
setup 1-3
shared folder 1-8
SIO module 2-11, 3-6, E-3
SIO/DIO class driver 1-5, 2-11, 3-4
size field 2-8
status field 2-8
streaming 2-11
SWI module E-3
SWI objects 3-8
swi_audio application 1-9
synchronous E-3
syncObj field 4-4
syncPacket field 4-4

T
timeout field 4-4
transfer function 2-12, 2-13, B-3
TSK module E-3
TSK objects 3-6
tsk_audio application 1-8, 3-4
txCallback function B-13
txIsr function

example 5-18

U
UART drivers 4-2, E-3
uart folder 1-9
uarttest application 1-9, 3-11
UDEV object 3-2, E-3
use callback version of DIO functions 3-6

V
video API 4-5
video capture drivers 4-2
video display drivers 4-2
Index--3

	DSP/BIOS Driver Developer's Guide
	Read This First
	About This Manual
	Notational Conventions
	Software Version Requirements
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Tables
	Figures

	About the Device Driver Developer’s Kit
	1.1 Using this Book
	1.1.1 For Application Developers and Integrators
	1.1.2 For Driver Developers

	1.2 Installing the DDK
	1.3 DSP/BIOS Driver Development Kit Overview
	1.3.1 Functional Device Drivers
	1.3.2 Documented Driver Model
	1.3.3 Reusable Class Driver Modules

	1.4 Kit Contents and Organization
	1.5 Using the Example Applications

	DSP/BIOS Device Driver Architecture and Usage
	2.1 Two-Level Device Driver Model
	2.1.1 Application Architecture Overview
	2.1.2 Driver Initialization and Binding
	2.1.3 Device and Channel Instances

	2.2 Driver Data Flow
	2.2.1 Channel Instance Handles
	2.2.2 IOM Packets
	2.2.3 Channel Operations
	2.2.4 I/O Request Submissions
	2.2.5 Device Control

	2.3 Class Driver Overview
	2.3.1 The SIO Adapter (DIO)
	2.3.2 The PIP Adapter (PIO)
	2.3.3 The GIO Class Driver

	Using DSP/BIOS Device Drivers
	3.1 Registering the Mini-Driver
	3.2 Configuring the DIO Class Driver (for SIO)
	3.2.1 Example Application
	3.2.2 Configuration Steps

	3.3 Configuring the PIO Class Driver (for PIP)
	3.3.1 Example Application
	3.3.2 Configuration Steps

	3.4 Configuring Applications to Use the GIO Class Driver
	3.4.1 Example Application
	3.4.2 Configuration Steps

	GIO Class Driver
	4.1 About the GIO Module
	4.2 Implementation Details for GIO
	4.2.1 GIO_Obj Structure

	4.3 Error Handling
	4.4 Extending the GIO API

	Developing a Mini-Driver Step-by-Step
	5.1 Mini-Driver Design and Implementation
	5.1.1 Binding Channels—mdBindDev
	5.1.2 Creating and Deleting Channels—mdCreateChan/mdDeleteChan
	5.1.3 Submitting I/O Requests—mdSubmitChan
	5.1.4 Servicing Interrupts and Completing I/O—ISRs
	5.1.5 Controlling a Device—mdControlChan

	5.2 Examining the ‘C5402 SBS Mini-Driver Example
	5.2.1 Constants, Types, and Structures
	5.2.2 Initialization Function
	5.2.3 mdBindDev Function
	5.2.4 mdControlChan Function
	5.2.5 mdCreateChan Function
	5.2.6 mdDeleteChan Function
	5.2.7 mdSubmitChan Function
	5.2.8 mdUnBindDev Function
	5.2.9 ISR Functions

	IOM Interface
	A.1 Mini-Driver Interface Overview
	mdBindDev
	mdControlChan
	mdCreateChan
	mdDeleteChan
	mdSubmitChan
	mdUnBindDev

	PIO Adapter
	B.1 PIO Adapter Interface Overview
	PIO_ctrl
	PIO_init
	PIO_new
	PIO_rxPrime
	PIO_rxStart
	PIO_txPrime
	PIO_txStart
	rxCallback
	txCallback

	Porting from the LIO to IOM Model
	C.1 Comparing the LIO and IOM Models
	C.1.1 Review of LIO Concepts
	C.1.2 LIO Adapters vs. IOM Class Drivers
	C.1.3 LIO Interface vs. IOM Interface Functions

	C.2 Migrating an LIO Application to Use an IOM Mini-Driver
	C.2.1 Configuration
	C.2.2 Initialization

	C.3 Migrating an LIO Controller to an IOM Mini-Driver

	The ASYNC Extension to the GIO API
	D.1 ASYNC Module Overview
	ASYNC_abort
	ASYNC_control
	ASYNC_create
	ASYNC_delete
	ASYNC_flush
	ASYNC_read
	ASYNC_write

	Glossary
	Index

